首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   1篇
测绘学   1篇
大气科学   6篇
地球物理   15篇
地质学   21篇
海洋学   5篇
天文学   12篇
自然地理   6篇
  2020年   1篇
  2018年   5篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   6篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   6篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1997年   3篇
  1996年   1篇
  1990年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
41.
Wentzel  Donat G. 《Solar physics》1997,175(1):191-196
Circularly polarized radio radiation maintains its polarization even where the magnetic field reverses its sign relative to the ray (QT region) if the reversal is sufficiently abrupt (strong QT region). Bastian (1995) suggested that coronal turbulence scatters radiation, such as type I bursts, sufficiently to make the reversal abrupt where it would otherwise not be. However, the observed directivity of type I bursts sets an upper limit on the scattering. This limit implies that the turbulent scattering is not sufficient to maintain the circular polarization as in a strong QT region. The conclusion is strengthened by an analytical calculation of the polarization. Apparently, the fully polarized type I bursts, near disk center, encounter no horizontal magnetic fields, at least not until high enough in the corona that the QT region is strong anyway.  相似文献   
42.
43.
Spectral ground motion (1 to 15 Hz) as a function of distance is modeled for events spanning 3.0 <Mw ≤ 7.0 in Switzerland. The parameters required to simulate ground motion with a stochastic approach are inverted from 2958 horizontal and vertical component waveforms of small to moderate size events (2.0 ≤ M{L} ≤ 5.2) in the distance range 10 to 300 km recorded on hard rock sites. Using a Monte Carlo simulation, we establish a significantly different amplification of about a factor of 1.9 between the Alpine Foreland and the Alps. To assess the trade-off between the free parameters of our stochastic model and their influence on the predictive ground motion relationship, we perform a grid search over the five-dimensional solution space. The uncertainties are separated into epistemic and aleatory parts; the main epistemic uncertainty is attributed to the lack of data forM > 5. To constrain the viable models at large magnitudes, results from worldwide scaling studies are evaluated in light of the Swiss data. The model that explains best the low observed stress drops at small magnitudes (Δσ ≅ 3 bar) yet matches observed intensities of historical earthquakes assumes a stress drop increasing with moment asM00.25. For three sites in Switzerland we evaluate the sensitivity of the epistemic uncertainty by computing probabilistic hazard curves. Our model offers the most comprehensive and detailed study of spectral ground motion for Switzerland to date.  相似文献   
44.
45.
Wentzel  Donat G. 《Solar physics》1984,90(1):139-159
The fundamental of type III bursts is only partially polarized, yet all theory for emission near the plasma frequency predicts pure o-mode emission. I argue depolarization is inherent in the burst itself. The o-mode radiation is intensely scattered and mode-converted when it temporarily falls behind its own source and finds itself in the medium that is already disturbed by the electron beam. In particular, mode conversion is very efficient and yet causes only modest angular scattering at the height were p + 0.5.The predicted minimum polarization nearly equals the polarization of the harmonic, as observed. Spike polarization is naturally explained by the earlier arrival of the scattered o-mode. Additional residual polarization depends on the refraction at the site of emission; larger beam velocities imply higher polarization, as observed, because a larger fraction of the radiation escapes without mode-conversion. The polarization at the frequencies where U-bursts reverse is of particular interest.Support is acknowledged from the NSF Solar-Terrestrial Research Program.  相似文献   
46.
47.
Hydromagnetic waves are of interest for heating the corona or coronal loops and for accelerating the solar wind. This paper enumerates some of the limitations that must be considered before hydromagnetic waves are taken seriously. In the lowest part of the corona, waves interact so that a significant fraction of the coronal wave flux should have periods as 10 s. If the problem of interest determines either a flux of wave energy or a dissipation rate, the distance that each wave mode can travel can be specified, and for at least one mode it must be consistent with the size and location of the region where the waves are to act. Heating of coronal loops observed by X-rays can be explained if the strength of the magnetic field along the loop lies within a rather narrow range and if the wave period is sufficiently short. In general, Alfvén waves travel furthest and reach high into the corona and into the solar wind. The radial variation of the magnetic field is the most important parameter determining where the waves are dissipated. Heating of coronal helmets by Alfvén waves is probable.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   
48.
The Valais earthquake of December 9, 1755   总被引:1,自引:0,他引:1  
  相似文献   
49.
The Valais is the most seismically active region of Switzerland. Strong damaging events occurred in 1755, 1855, and 1946. Based on historical documents, we discuss two known damaging events in the sixteenth century: the 1524 Ardon and the 1584 Aigle earthquakes. For the 1524, a document describes damage in Ardon, Plan-Conthey, and Savièse, and a stone tablet at the new bell tower of the Ardon church confirms the reconstruction of the bell tower after the earthquake. Additionally, a significant construction activity in the Upper Valais churches during the second quarter of the sixteenth century is discussed that however cannot be clearly related to this event. The assessed moment magnitude Mw of the 1524 event is 5.8, with an error of about 0.5 units corresponding to one standard deviation. The epicenter is at 46.27 N, 7.27 E with a high uncertainty of about 50 km corresponding to one standard deviation. The assessed moment magnitude Mw of the 1584 main shock is 5.9, with an error of about 0.25 units corresponding to one standard deviation. The epicenter is at 46.33 N and 6.97 E with an uncertainty of about 25 km corresponding to one standard deviation. Exceptional movements in the Lake Geneva wreaked havoc along the shore of the Rhone delta. The large dimension of the induced damage can be explained by an expanded subaquatic slide with resultant tsunami and seiche in Lake Geneva. The strongest of the aftershocks occurred on March 14 with magnitude 5.4 and triggered a destructive landslide covering the villages Corbeyrier and Yvorne, VD.  相似文献   
50.
A new seismic hazard model for Cairo, the capital city of Egypt is developed herein based on comprehensive consideration of uncertainties in various components of the probabilistic seismic hazard analysis. The proposed seismic hazard model is developed from an updated catalogue of historical and instrumental seismicity, geodetic strain rates derived from GPS-based velocity-field of the crust, and the geologic slip rates of active faults. The seismic source model consists of area sources and active faults characterised to forecast the seismic productivity in the region. Ground motion prediction models are selected to describe the expected ground motion at the sites of interest. The model accounts for inherent epistemic uncertainties of statistical earthquake recurrence; maximum magnitude; ground motion prediction models, and their propagation toward the obtained results. The proposed model is applied to a site-specific hazard analysis for Kottamiya, Rehab City and Zahraa-Madinat-Nasr (hereinafter referred to as Zahraa) to the East of Cairo (Egypt). The site-specific analysis accounts for the site response, through the parameterization of the sites in terms of average 30-m shear-wave velocity (Vs30). The present seismic hazard model can be considered as a reference model for earthquake risk mitigation and proper resilience planning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号