首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   2篇
测绘学   2篇
大气科学   1篇
地球物理   5篇
地质学   12篇
天文学   30篇
自然地理   4篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2010年   2篇
  2006年   3篇
  2005年   1篇
  2004年   5篇
  1999年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1975年   4篇
  1974年   3篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
11.
12.
Biophysical and biochemical plant foliage parameters play a key role in assessing vegetation health. Those plant parameters determine the spectral reflectance and transmittance properties of vegetation; therefore, hyperspectral remote sensing, particularly imaging spectroscopy, can provide estimates of leaf and canopy chemical properties. Based on the relationship between spectral response and biochemical/biophysical properties of the leaves and canopies, the PROSPECT radiative transfer model simulates the interaction of light with leaves. In this study, more than 1100 leaf samples from the Amazon forest of Ecuador were collected at several study sites, some of which are affected by petroleum pollution, and across the vertical profile of the forest. For every sample, field spectroscopy at leaf level was conducted with a spectroradiometer. The goal of this study was to assess leaf optical properties of polluted and unpolluted rainforest canopies across the vertical profile and identify vegetation stress expressed in changes of biophysical and biochemical properties of vegetation. An ANOVA followed by Holme’s multiple comparisons of means and a principal component analysis showed that photosynthetic pigments, chlorophyll and carotenoids have significantly lower levels across the vertical profile of the forest, particularly in sites affected by petroleum pollution. On the other hand, foliar water content showed significantly higher levels in the polluted site. Those findings are symptoms of vegetation stress caused by reduced photosynthetic activity and consequently decreased transpiration and water-use efficiency of the plants. Cross-comparison between SPAD-502 chlorophyll content meter index and chlorophyll content showed strong positive correlation coefficients (r = 0.71 and r 2 = 0.51) which suggests that using the SPAD-502 chlorophyll index itself is sensitive enough to detect vegetation stress in a multispecies tropical forest. Therefore, the SPAD-502 can be used to assess chlorophyll content of vegetation across polluted and non-polluted sites at different canopy layers. The results presented in this paper contribute to the very limited literature on field spectroscopy and radiative transfer models applied to the vertical profile of the Amazon forest.  相似文献   
13.
Zeolites have been used for a long time for purification and catalytical purposes. Recently, first products appeared on the market using zeolites also for improving the indoor air quality so far volatile organic compounds (VOC) are concerned. However, porous compounds like zeolites can be found also in plaster material. Therefore, it was manifest to evaluate the capability of plaster with regard to air cleaning. In this article, the contribution of plaster compounds toward adsorption and catalytical decomposition of VOCs is evaluated using α‐pinene, chlorobenzene, 2‐ethoxyethylacetate, and pentanal as target substances under standard conditions (23°C, 50% r.H.). These compounds were chosen because of their VOC typical physicochemical properties like molecular dimensions, density, boiling point, vapor pressure, and octanol–water distribution coefficient (logkow). Hydrated lime and metakaolin were found out to have good adsorption properties under these circumstances. Also natural zeolites showed good results especially on pentanal. By investigations in environmental chambers the reduction potential of test plasters on chlorobenzene and 2‐ethoxyethylacetate concentrations could be shown. Application of coatings had no or only temporary influence on the performance of the plaster. Additional tests in small chambers demonstrated the possibility to improve the properties of plasters with help of FAU‐ or MFI‐type zeolites but the experiments also showed that α‐pinene and pentanal undergo chemical reactions. Further effort should be made on investigations also toward other compounds, especially more volatile ones like formaldehyde. Also additional building materials like insulation material or boards should be taken into account.  相似文献   
14.
The orbit of 1970-47B passed very slowly through 14th-order resonance, and the changes in orbital inclination and eccentricity have been analysed over a 4-year period, from January 1977 to January 1981, using 208 U.S. Navy orbits. The analysis has yielded values for three pairs of lumped harmonic coefficients of 14th order, which have accuracies equivalent to 0.4, 1.5 and 2.0 cm in geoid height. Three pairs of values of 28th-order lumped harmonic coefficients were also obtained, and the best of these has a standard deviation (S.D.) corresponding to an accuracy of 0.7 cm in geoid height. The lumped harmonic coefficients have been compared with the corresponding values from the latest geopotential models, and agreement is satisfactory.  相似文献   
15.
The rocket of Cosmos 268, 1969-20B, entered orbit on 5 March 1969, with an initial perigee height of 230 km and inclination of 48.40°. Accurate orbits were computed at RAE from all available observations. Using the values of perigee height from the RAE orbit and decay rates from Spacetrack bulletins, 103 values of density have been calculated between July 1969 and February 1970. On three occasions when geomagnetic activity was strong there were sudden increases in density. When the density was corrected to a fixed height, the semi-annual variation was apparent. There was a strong minimum in July 1969, a maximum in October–November 1969 and a weak minimum in January 1970.  相似文献   
16.
The average rotation rate of the upper atmosphere can be found by analysis of the changes in the orbital inclinations of satellites, and results previously obtained have indicated that the atmospheric rotation rate appreciably exceeds the Earth's rotation rate at heights between 200 and 400 km.We have examined all such results previously published in the light of current standards of accuracy: some are accepted, some revised, and some rejected as inadequate in accuracy. We also analyse a number of fresh orbits and, adding these to the accepted and revised previous results, we derive the variation of zonal wind speed with height and local time. The rotation rate (rev/day) averaged over all local times increases from near 1.0 at 150 km height to 1.3 near 350 km (corresponding to an average west-to-east wind of 120 m/s), and then decreases to 1.0 at 400 km and probably to about 0.8 at greater heights. The maximum west-to-east winds occur in the evening hours, 18–24 h local time: these evening winds increase to a maximum of about 150 m/s at heights near 350 km and decline to near zero around 600 km. In the morning, 4–12 h local time, the winds are east to west, with speeds of 50–100 m/s above 200 km. We also tentatively conclude that, at heights above 350 km, the average rotation rate is greater in equatorial latitudes (0–25°) than at higher latitudes.  相似文献   
17.
The coefficients of third degree and fifth degree polynomial representations of limb darkening are tabulated for 50 wavelengths in the interval 7404-24 018.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.Summer Research Assistant at Kitt Peak National Observatory 1975.  相似文献   
18.
Variations in air density have been determined using the orbit of the satellite Cosmos 462, 1971-106A, which entered orbit on 3 December 1971 with an initial perigee near 230 km and inclination 65.75°, and decayed on 4 April 1975. Accurate orbits determined at 85 epochs give perigee height correct to about 200 m throughout the satellite's lifetime. Using these values of perigee height and orbital decay rates from NORAD elements, 604 values of air density at half a scale height above perigee have been evaluated. These densities have been compared with values from the COSPAR International Reference Atmosphere 1972, taking account of variations due to solar activity and geomagnetic disturbances, and day-to-night variations, to reveal the residual variations in density at a series of standard heights, 245, 240, 232 and 213 km.The main residual variation is semi-annual, with maxima usually in April and October, and minima usually in January and July; but it is irregular in phase and shape. The amplitude of the semi-annual variation is remarkably constant from year to year between 1972 and 1975, and considerably greater than that given by CIRA 1972: the April/July density ratio is 1.68, not 1.32 as in CIRA; the October–November maxima are all lower than the April maxima, whereas CIRA gives the opposite; the July minima are 18% lower than the January minima, as opposed to 10% in CIRA.A standardized semi-annual density variation for the early 1970s is presented, with January minimum of 0.94, April maximum of 1.28, July minimum of 0.77 and October–November maximum of 1.22. In addition, three other recurrent variations are recognizable: in each year the density has a subsidiary minimum in May and maximum in June; there are low values in mid November and high values in late December.  相似文献   
19.
Abstract— Core from the Yaxcopoil‐1 (Yax‐1) hole, drilled as a result of the Chicxulub Scientific Drilling Project (CSDP), has been analyzed to investigate the relationship between opaque mineralogy and rock magnetic properties. Twenty one samples of suevite recovered from the depth range 818–894 m are generally paramagnetic, with an average susceptibility of 2000 times 10?6 SI and have weak remanent magnetization intensities (average 0.1 A/m). The predominant magnetic phase is secondary magnetite formed as a result of low temperature (<150 °C) alteration. It occurs in a variety of forms, including vesicle infillings associated with quartz and clay minerals and fine aggregates between plagioclase/diopside laths in the melt. Exceptional magnetic properties are found in a basement clast (metamorphosed quartz gabbro), which has a susceptibility of >45000 times 10?6 SI and a remanent magnetization of 77.5 A/m. Magnetic mafic basement clasts are a common component in the Yax‐1 impactite sequence. The high susceptibility and remanence in the mafic basement clasts are caused by the replacement of amphiboles and pyroxenes by an assemblage with fine <1 μm magnetite, ilmenite, K‐feldspar, and stilpnomelane. Replacement of the mafic minerals by the magnetic alteration assemblage occurred before impact. Similar alteration mechanisms, if operative within the melt sheet, could explain the presence of the high amplitude magnetic anomalies observed at Chicxulub.  相似文献   
20.
Abstract— Chicxulub and Sudbury are 2 of the largest impact structures on Earth. Research at the buried but well‐preserved Chicxulub crater in Mexico has identified 6 concentric structural rings. In an analysis of the preserved structural elements in the eroded and tectonically deformed Sudbury structure in Canada, we identified ring‐like structures corresponding in both radius and nature to 5 out of the 6 rings at Chicxulub. At Sudbury, the inner topographic peak ring is missing, which if it existed, has been eroded. Reconstructions of the transient cavities for each crater produce the same range of possible diameters: 80–110 km. The close correspondence of structural elements between Chicxulub and Sudbury suggests that these 2 impact structures are approximately the same size, both having a main structural basin diameter of ?150 km and outer ring diameters of ?200 km and ?260 km. This similarity in size and structure allows us to combine information from the 2 structures to assess the production of shock melt (melt produced directly upon decompression from high pressure impact) and impact melt (shock melt and melt derived from the digestion of entrained clasts and erosion of the crater wall) in large impacts. Our empirical comparisons suggest that Sudbury has ?70% more impact melt than does Chicxulub (?31,000 versus ?18,000 km3) and 85% more shock melt (27,000 km3 versus 14,500 km3). To examine possible causes for this difference, we develop an empirical method for estimating the amount of shock melt at each crater and then model the formation of shock melt in both comet and asteroid impacts. We use an analytical model that gives energy scaling of shock melt production in close agreement with more computationally intense numerical models. The results demonstrate that the differences in melt volumes can be readily explained if Chicxulub was an asteroid impact and Sudbury was a comet impact. The estimated 70% difference in melt volumes can be explained by crater size differences only if the extremes in the possible range of melt volumes and crater sizes are invoked. Preheating of the target rocks at Sudbury by the Penokean Orogeny cannot explain the excess melt at Sudbury, the majority of which resides in the suevite. The greater amount of suevite at Sudbury compared to Chicxulub may be due to the dispersal of shock melt by cometary volatiles at Sudbury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号