首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62395篇
  免费   910篇
  国内免费   1148篇
测绘学   2126篇
大气科学   4503篇
地球物理   12030篇
地质学   25213篇
海洋学   4554篇
天文学   10276篇
综合类   2239篇
自然地理   3512篇
  2022年   257篇
  2021年   438篇
  2020年   501篇
  2019年   577篇
  2018年   5637篇
  2017年   4935篇
  2016年   3605篇
  2015年   805篇
  2014年   1108篇
  2013年   1878篇
  2012年   2153篇
  2011年   4259篇
  2010年   3389篇
  2009年   4025篇
  2008年   3458篇
  2007年   3972篇
  2006年   1610篇
  2005年   1250篇
  2004年   1472篇
  2003年   1506篇
  2002年   1240篇
  2001年   918篇
  2000年   849篇
  1999年   737篇
  1998年   740篇
  1997年   724篇
  1996年   588篇
  1995年   575篇
  1994年   503篇
  1993年   453篇
  1992年   412篇
  1991年   423篇
  1990年   440篇
  1989年   390篇
  1988年   370篇
  1987年   399篇
  1986年   415篇
  1985年   510篇
  1984年   545篇
  1983年   542篇
  1982年   496篇
  1981年   472篇
  1980年   447篇
  1979年   408篇
  1978年   376篇
  1977年   384篇
  1976年   350篇
  1975年   353篇
  1974年   340篇
  1973年   370篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
The solar differential rotation: Present status of observations   总被引:1,自引:0,他引:1  
E. H. Schröter 《Solar physics》1985,100(1-2):141-169
The present status of observations regarding the solar differential rotation is reviewed from contributions published in the last two decades. The paper does not deal with the theory; it mentions theoretical aspects only where they are needed to guide and to understand observational efforts and results.Mitteilungen aus dem Kiepenheuer-Institut Nr. 250.  相似文献   
152.
Based on the MASNUM wave-tide-circulation coupled numerical model, the temperature structure along 35°N in the Yellow Sea was simulated and compared with the observations. One of the notable features of the temperature structure along 35°N section is the double cold cores phenomena during spring and summer. The double cold cores refer to the two cold water centers located near 122°E and 125°E from the depth of 30m to bottom. The formation, maintenance and disappearance of the double cold cores are discussed. At least two reasons make the temperature in the center (near 123°E) of the section higher than that near the west and east shores in winter. One reason is that the water there is deeper than the west and east sides so its heat content is higher. The other is invasion of the warm water brought by the Yellow Sea Warm Current (YSWC) during winter. This temperature pattern of the lower layer (from 30m to bottom) is maintained through spring and summer when the upper layer (0 to 30m) is heated and strong thermocline is formed. Large zonal span of the 35°N section (about 600 km) makes the cold cores have more opportunity to survive. The double cold cores phenomena disappears in early autumn when the west cold core vanishes first with the dropping of the thermocline position. Supported by the National Basic Research Program of China (No. G1999043809) and the National Science Foundation of China (No. 49736190).  相似文献   
153.
The study of the evolution of planetary systems, primarily of the Solar System, is one of the basic problems of celestial mechanics. The stability of motion of giant planets on cosmogonic time scales was established by numerical and analytical methods, but the question about the evolution of orbits of terrestrial planets and arbitrary solar-type planetary systems remained open. This work initiates a series of papers allowing one to advance in solving the problem of the evolution of the solar-type planetary systems on cosmogonic time scales by using powerful analytical tools. In the first paper of this series, we choose the optimum reference system and obtain the Poisson series expansion of the Hamiltonian of the problem in all Keplerian elements. We propose to use the integral representation of the corresponding coefficients or the Poisson processor means instead of conventionally addressing any possible special functions. This approach extremely simplifies the algorithm. The next paper of this series deals with the calculation of the expansion coefficients.  相似文献   
154.
155.
The reflectance coefficient of the regolith layer of celestial bodies has been studied in relation to the physical properties of regolith particles (size, refractive index, and packing density) on the basis of an accurate numerical radiative-transfer algorithm for a semi-infinite flat layer. Using the geometric-optics approximation, we have found that a shape mixture of randomly oriented spheroids can successfully model the single-scattering phase function of independent soil grains. In order to take into account the effect of packing density in a regolith layer, the concept of the so-called static structure factor was used. The main effect of increasing packing density is to suppress the forward-scattering peak of the phase function and to increase the albedo of the reflecting surface. We also investigated the influence of fine dust on the reflected light. An addition of small particles not only increases the surface albedo, but also changes the brightness profile and enhances the backscattering. Although the problem of unique solution, which is inherent in the retrieval of the properties of a medium from the measurements of the intensity of light scattered by this media, cannot be removed in the proposed model, the procedure used here, in contrast to widely used approximations, allows us to fit observational data with a set of real characteristics of the regolith. Semiempirical approaches are able to fit the measurements well with a small number of free parameters, but they do not explicitly contain crucial physical characteristics of the regolith such as grain sizes or the refractive index. We compared the numerical solution of the radiative-transfer equation with the Hapke approximation, which is most often used by investigators. The errors introduced by the Hapke model are small only for near-isotropic scattering by isolated particles. However, independent regolith grains are known to scatter light mainly in the forward direction.  相似文献   
156.
Knowles  S.H.  Picone  J.M.  Thonnard  S.E.  Nicholas  A.C. 《Solar physics》2001,204(1-2):387-397
Geomagnetic storms driven by solar eruptions are known to have significant effects on the total density of the upper atmosphere in the altitude range 250–1000 km. This in turn causes a measurable effect on the orbits of resident space objects in this altitude range. We analyzed a sample of these orbits, both from sensor data and from orbital element sets, during the period surrounding the 14 July 2000 solar activity. We present information concerning the effects of this event on the orbits of resident space objects and how well accepted atmospheric models were able to represent it. As part of this analysis, we describe a technique for extracting atmospheric density information from orbital element sets. On daily time scales, the effect of geomagnetic activity appears to be more important than that of prompt radiation. However, the limitations in time and amplitude quantization of the accepted solar indices are evident. A limited comparison is also made with previous solar storm events.  相似文献   
157.
We outline the results of a two-dimensional (2D) fit to the light distribution of early-type galaxies belonging to a complete volume-limited sample and discuss briefly the significant correlations among the structural parameters. In particular we reconfirm that the lack of structural homology is probably a characteristic of hot stellar systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
158.
J.M. Ajello  G.E. Thomas 《Icarus》1985,61(1):163-170
Our current understanding of the spatial and temporal distribution of interplan etary neutral hydrogen is currently limited to a comparison of Lyman-σ photometric data with predictions of the solar backscattered radiation using theoretical models. In this paper, how the uncertainties in current model calculations could be reduced through the future use of polarization measurements made from interplanetary spacecraft is investigated. In particular, inquiry into how a mapping of the degree of linear polarization made from a spacecraft at various locations in the Solar System can improve knowledge of the interstellar wind parameters, number density, temperature, and velocity, is made. A polarization measurement can, in principle, be made with very high precision. In this regard, being a relative quantity, a polarization measurement can be made independent of instrumental calibration and long-term sensitivity degredation. Furthermore, the sky distribution of both intensity and polarization has been calculated using a variety of models for the neutral hydrogen. It is found that the polarization distribution over the sky is quite different from that of the intensity distribution. It is also showed that the maximum degree of polarization of the Laymam-σ line increases with heliocentric distance of the spacecraft, varying from 0 up to ~ 18% at 20 AU.  相似文献   
159.
The quadrupole mass spectrometer flown by the Air Force Geophysics Laboratory on STS-4 in 1982 detected large intensities of several ions, primarily O+, H2O+ and H3O+, with energies less than 1.5 e V with respect to the Shuttle Orbiter. Ion-molecule reactions and non-reactive scattering between the outgassing neutral flux from the Orbiter surfaces and the ambient ionic species are identified as the primary source of these low energy ions.  相似文献   
160.
About a dozen physical mechanisms and models aspire to explain the negative polarization of light scattered by atmosphereless celestial bodies. This is too large a number for the reliable interpretation of observational data. Through a comparative analysis of the models, our main goal is to answer the question: Does any one model have an advantage over the others? Our analysis is based on new laboratory polarimetric and photometric data as well as on theoretical results. We show that the widely used models due to Hopfield and Wolff cannot realistically explain the phase-angle dependence of the degree of polarization observed at small phase angles. The so-called interference or coherent backscattering mechanism is the most promising model. Models based on that mechanism use well-defined physical parameters to explain both negative polarization and the opposition effect. They are supported by laboratory experiments, particularly those showing enhancement of negative polarization with decreasing particle size down to the wavelength of light. According to the interference mechanism, pronounced negative branches of polarization, like those of C-class asteroids, may indicate a high degree of optical inhomogeneity of light-scattering surfaces at small scales. The mechanism also seems appropriate for treating the negative polarization and opposition effects of cometary dust comae, planetary rings, and the zodiacal light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号