首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69733篇
  免费   1128篇
  国内免费   689篇
测绘学   1732篇
大气科学   4998篇
地球物理   13453篇
地质学   28343篇
海洋学   5473篇
天文学   13833篇
综合类   334篇
自然地理   3384篇
  2022年   342篇
  2021年   554篇
  2020年   612篇
  2019年   682篇
  2018年   3958篇
  2017年   3718篇
  2016年   2912篇
  2015年   979篇
  2014年   1514篇
  2013年   2488篇
  2012年   2613篇
  2011年   4530篇
  2010年   4154篇
  2009年   4681篇
  2008年   3871篇
  2007年   4424篇
  2006年   1985篇
  2005年   1864篇
  2004年   1729篇
  2003年   1835篇
  2002年   1520篇
  2001年   1162篇
  2000年   1088篇
  1999年   950篇
  1998年   942篇
  1997年   912篇
  1996年   792篇
  1995年   748篇
  1994年   652篇
  1993年   581篇
  1992年   508篇
  1991年   537篇
  1990年   542篇
  1989年   504篇
  1988年   447篇
  1987年   523篇
  1986年   504篇
  1985年   595篇
  1984年   645篇
  1983年   651篇
  1982年   603篇
  1981年   557篇
  1980年   529篇
  1979年   487篇
  1978年   437篇
  1977年   464篇
  1976年   416篇
  1975年   420篇
  1974年   402篇
  1973年   440篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
971.
The Tandilia Belt in northeast Argentina includes a Neoproterozoic sequence of sediments (Sierras Bayas Group), in which the Cerro Largo Formation, ca. 750 Ma in age, forms a siliciclastic, shallowing upward succession of subtidal nearshore to tidal flat deposits. Trace fossils Palaeophycus isp. and Didymaulichnus isp. have been described from the upper part of this succession. Specific sedimentary structures consisting of round-crested bulges, arranged in a reticulate pattern, and networks of curved cracks are associated with the trace fossils. These structures are considered to be related to epibenthic microbial mats that once colonized the sediment surface. They reflect stages of mat growth and mat destruction, if compared to analogous structures in modern cyanobacterial mats of peritidal, siliciclastic depositional systems. Also the trace fossils are interpreted as mat-related structures, partly forming components of networks of shrinkage cracks, partly representing the upturned and involute margins of shrinkage cracks or circular openings in desiccating and shrinking, thin microbial mats.

The definition of Didymaulichnus miettensis Young as a Terminal Proterozoic trace fossil is questioned, and it may be considered to interpret the ‘bilobate’ structure as the upturned, opposite margins of microbial shrinkage cracks which have been brought back into contact by compaction after burial.  相似文献   

972.
A geological study of the hitherto poorly described Neoproterozoic Gifberg Group, with emphasis on lithogeochemistry and O, C and Sr isotopic composition of the carbonate-dominated Widouw Formation (Vredendal Outlier, westernmost South Africa) revealed that the entire group is an equivalent of the relatively well constrained Port Nolloth Group in the external, paraautochthonous part of the Pan-African Gariep Belt further north. Thus, the Vredendal Outlier can be regarded as the southern extension of the Port Nolloth Zone. Two diamictite units are recognised in the Vredendal Outlier, which can be correlated respectively with the c. 750 Ma Kaigas Formation diamictite and the 583 Ma, syn-Gaskiers Numees Formation diamictite in the Gariep Belt proper. The dominating carbonate unit in the studied area is post-glacial with respect to the older of the two diamictite units. The combined textural, structural and geochemical evidence suggests that parts of the variably dolomitised limestone succession represent former evaporite beds. Sedimentation in a restricted, very shallow and proximal basin led to a wide range in C isotope ratios (δ13CPDB from − 4.2 to + 4.8‰), very high Sr concentrations (derived from original anhydrite) and initial 87Sr/86Sr ratios that are significantly higher (0.70785) than those of coeval seawater. As C and Sr isotopes are commonly used for chemostratigraphic correlation, and high Sr concentrations in Neoproterozic carbonates are often interpreted as evidence of former aragonite, the findings of this study should be used as warning against uncritical use of geochemical and isotopic parameters for describing ancient seawater composition. Thus C and Sr isotope ratios alone in Neoproterozoic carbonates may be less powerful proxies of ancient seawater composition, and high Sr contents are not necessarily indicative of an “aragonite sea”, as previously inferred.  相似文献   
973.
The mineralogy and structural features of the main types of ferromanganese deposits—nodules, micronodules, Co-bearing crusts, crustlike nodules, and low-temperature hydrothermal manganese crusts and ferruginous ochers—are considered. The correlation between their mineral composition and structure is shown. The proposed classification of mineral types is based on characteristic assemblages of Fe and Mn minerals.  相似文献   
974.
The study of mineral assemblages at the Central deposit allowed us to substantially refine the evolutionary model of the deposit and reveal the two main factors that control the variability of its mineralic space: (1) heterogeneity of the ore layer, consisting of a sublittoral bottom placer (the lower part) and a subaerial dune complex partly reworked in the course of a new transgression (the upper part), and (2) postore epigenetic alteration of the ore constituent of sands, which affected the quality of ore concentrates. The results obtained will be used in geological and technological mapping and development of the production program.  相似文献   
975.
Volkhovites—tektite-like glasses—have been detected in the Holocene glacial drift along the right bank of the Volkhov River. A cryptomagmatic model of their formation and pre-Holocene age of volkhovite melts, cinder, and frothed glasses has been suggested (Skublov et al., 2007). Four geochemical types of volkhovites are distinguished: (1) manganous (Mn, Fe, Cr, V, Si, Nb, Pb, H), (2) magnesian (Mg, Al, Ti, F, B), (3) potassic (K, Rb, Cs), and (4) calcic (Ca, REEs, Ba, U, Th, Ta, Hf, Y, Sc, Cl). In light of the geochemical data, volkhovites are regarded as natural silicate glasses of kimberlite-carbonatite composition. Their types are called kimberlitic (Mn type), kimberlitic-carbonatitic (Mg type), lamproitic-carbonatitic (K type), and carbonatitic (Ca type). Volkhovites are suggested to be indicators of undiscovered diamond mineralization of kimberlite or carbonatite (Chagatai) types.  相似文献   
976.
We analyze the flare events of October 28 and May 27, 2003 to examine the possible connection of solar flares with singularities in the differential characteristics of solar magnetic fields. The relation between flares and the behavior of F indicators (which describe structural singularities of the magnetic fields) introduced earlier is analyzed. It is shown that the generation of flares can be associated with self-intersections (or reconnection) of the F = 0 curves, where magnetic reconnection can occur. Consequently, the current sheets generated in such regions can be sources of energy release.  相似文献   
977.
It is shown that the centroid of the heliospheric equator undergoes quasi-periodic oscillations. During the minimum of the 11-year cycle, the centroid shifts southwards (the so-called bashful-ballerina effect). The direction of the shift reverses during the solar maximum. The solar quadrupole is responsible for this effect. The shift is compared with the tilt of the heliospheric current sheet.  相似文献   
978.
The central magnetic field and rotation of the solar radiative zone are responsible for corrections to the g-mode frequencies. Magnetogravitational spectra are calculated analytically in a simple one-dimensional MHD model that goes beyond the WKB approximation and avoid any cusp resonances that trap the wave within the radiative zone in the presence of a weak magnetic background. The calculations are compared with spacecraft observations of the 1% frequency shifts for candidate g-modes found in the SOHO GOLF experiment. The magnetic correction is the main contribution for a strong magnetic field satisfying the approximation used. It is shown that a constant magnetic field of 700 kG in the radiative zone provides the required frequency shift for the n = ?10 g-mode. The rotational correction, which is due to the Coriolis force in the one-dimensional model used, is much less than a percent (αΩ ≤ 0.003).  相似文献   
979.
We simulate direct current (DC) borehole resistivity measurements acquired in steel-cased deviated wells for the assessment of rock formation properties. The assumed data acquisition configuration considers one current (emitter) and three voltage (collector) electrodes that are utilized to measure the second difference of the electric potential along the well trajectory. We assume a homogeneous, 1.27-cm-thick steel casing with resistivity equal to 10 − 5 Ω· m. Simulations are performed with two different numerical methodologies. The first one is based on transferring two-dimensional (2D) axisymmetric optimal grids to a three-dimensional (3D) simulation software. The second one automatically produces optimal 3D grids yielded by a 3D self-adaptive goal-oriented algorithm. Both methodologies utilize high-order finite elements (FE) that are specially well-suited for problems with high-contrast coefficients and rapid spatial variations of the electric field, as it occurs in simulations that involve steel-cased wells. The method based on transferring 2D-optimal grids is efficient in terms of CPU time (few seconds per logging position). Unfortunately, it may produce inaccurate 3D simulations in deviated wells, even though the error remains below 1% for the axisymmetric (vertical) well. The method based on optimal 3D grids, although less efficient in terms of CPU time (few hours per logging position), produces more accurate results that are validated by a built-in a posteriori error estimator. This paper provides the first existing simulations of through-casing resistivity measurements in deviated wells. Simulated resistivity measurements indicate that, for a 30° deviated well, measurements in conductive layers 0.01 Ω· m) are similar to those obtained in vertical wells. However, in resistive layers (10,000 Ω· m), we observe 100% larger readings in the 30° deviated well. This difference becomes 3,000% for the case of a 60° deviated well. For this highly-deviated well, readings corresponding to the conductive formation layer are about 30% smaller in magnitude than those in a vertical well. Shoulder effects significantly vary in deviated wells.  相似文献   
980.
Analyses of 72 samples from Upper Panjhara basin in the northern part of Deccan Plateau, India, indicate that geochemical incongruity of groundwater is largely a function of mineral composition of the basaltic lithology. Higher proportion of alkaline earth elements to total cations and HCO3>Cl + SO4 reflect weathering of primary silicates as chief source of ions. Inputs of Cl, SO4, and NO3 are related to rainfall and localized anthropogenic factors. Groundwater from recharge area representing Ca + Mg–HCO3 type progressively evolves to Ca + Na–HCO3 and Na–Ca–HCO3 class along flow direction replicates the role of cation exchange and precipitation processes. While the post-monsoon chemistry is controlled by silicate mineral dissolution + cation exchange reactions, pre-monsoon variability is attributable chiefly to precipitation reactions + anthropogenic factors. Positive correlations between Mg vs HCO3 and Ca + Mg vs HCO3 supports selective dissolution of olivine and pyroxene as dominant process in post-monsoon followed by dissolution of plagioclase feldspar and secondary carbonates. The pre-monsoon data however, points toward the dissolution of plagioclase and precipitation of CaCO3 supported by improved correlation coefficients between Na + Ca vs HCO3 and negative correlation of Ca vs HCO3, respectively. It is proposed that the eccentricity in the composition of groundwater from the Panjhara basin is a function of selective dissolution of olivine > pyroxene followed by plagioclase feldspar. The data suggest siallitization (L < R and R k) as dominant mechanism of chemical weathering of basalts, stimulating monosiallitic (kaolinite) and bisiallitic (montmorillonite) products. The chemical denudation rates for Panjhara basin worked out separately for the ground and surface water component range from 6.98 to 36.65 tons/km2/yr, respectively. The values of the CO2 consumption rates range between 0.18 × 106 mol//km2/yr (groundwater) and 0.9 × 106 mol/km2/yr (surface water), which indicates that the groundwater forms a considerable fraction of CO2 consumption, an inference, that is, not taken into contemplation in most of the studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号