首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   11篇
  国内免费   4篇
测绘学   3篇
大气科学   15篇
地球物理   65篇
地质学   82篇
海洋学   32篇
天文学   33篇
综合类   2篇
自然地理   4篇
  2021年   2篇
  2019年   1篇
  2018年   5篇
  2017年   4篇
  2016年   11篇
  2015年   4篇
  2014年   9篇
  2013年   5篇
  2012年   5篇
  2011年   16篇
  2010年   5篇
  2009年   11篇
  2008年   11篇
  2007年   7篇
  2006年   7篇
  2005年   14篇
  2004年   5篇
  2003年   6篇
  2002年   14篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   10篇
  1982年   5篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
  1975年   4篇
  1974年   4篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有236条查询结果,搜索用时 31 毫秒
41.
The viscosity of a silicate melt of composition NaAlSi2O6 was measured at pressures from 1.6 to 5.5 GPa and at temperatures from 1,350 to 1,880°C. We employed in situ falling sphere viscometry using X-ray radiography. We found that the viscosity of the NaAlSi2O6 melt decreased with increasing pressure up to 2 GPa. The pressure dependence of viscosity is diminished above 2 GPa. By using the relationship between the logarithm of viscosity and the reciprocal temperature, the activation energies for viscous flow were calculated to be 3.7 ± 0.4 × 102 and 3.7 ± 0.5 × 102 kJ/mol at 2.2 and 2.9 GPa, respectively.  相似文献   
42.
In this article, we review the significant recent results of geophysical studies and discuss their implications on seismotectonics, magmatism, and mantle dynamics in East Asia. High-resolution geophysical imaging revealed structural heterogeneities in the source areas of large crustal earthquakes, which may reflect magma and fluids that affected the rupture nucleation of large earthquakes. In subduction zone regions, the crustal fluids originate from the dehydration of the subducting slab. Magmatism in arc and back-arc areas is caused by the corner flow in the mantle wedge and dehydration of the subducting slab. The intraplate magmatism has different origins. The continental volcanoes in Northeast Asia (such as Changbai and Wudalianchi) seem to be caused by the corner flow in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and the deep dehydration of the stagnant slab as well. The Tengchong volcano in Southwest China is possibly caused by a similar process in BMW above the subducting Burma microplate (or Indian plate). The Hainan volcano in southernmost China seems to be a hotspot fed by a lower-mantle plume associated with the Pacific and Philippine Sea slabs’ deep subduction in the east and the Indian slab’s deep subduction in the west down to the lower mantle. The occurrence of deep earthquakes under the Japan Sea and the East Asia margin may be related to a metastable olivine wedge in the subducting Pacific slab. The stagnant slab finally collapses down to the bottom of the mantle, which may trigger upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and cause the slab–plume interactions. Some of these issues, such as the origin of intraplate magmatism, are still controversial, and so further detailed studies are needed from now.  相似文献   
43.
Pressure–volume–temperature relations have been measured to 32 GPa and 2073 K for natural magnesite (Mg0.975Fe0.015Mn0.006Ca0.004CO3) using synchrotron X-ray diffraction with a multianvil apparatus at the SPring-8 facility. A least-squares fit of the room-temperature compression data to a third-order Birch–Murnaghan equation of state (EOS) yielded K0 = 97.1 ± 0.5 GPa and K′ = 5.44 ± 0.07, with fixed V0 = 279.55 ± 0.02 Å3. Further analysis of the high-temperature compression data yielded the temperature derivative of the bulk modulus (∂KT/∂T)P = −0.013 ± 0.001 GPa/K and zero-pressure thermal expansion α = a0 + a1T with a0 = 4.03 (7) × 10−5 K−1 and a1 = 0.49 (10) × 10−8 K−2. The Anderson–Grüneisen parameter is estimated to be δT = 3.3. The analysis of axial compressibility and thermal expansivity indicates that the c-axis is over three times more compressible (KTc = 47 ± 1 GPa) than the a-axis (KTc = 157 ± 1 GPa), whereas the thermal expansion of the c-axis (a0 = 6.8 (2) × 10−5 K−1 and a1 = 2.2 (4) × 10−8 K−2) is greater than that of the a-axis (a0 = 2.7 (4) × 10−5 K−1 and a1 = −0.2 (2) × 10−8 K−2). The present thermal EOS enables us to accurately calculate the density of magnesite to the deep mantle conditions. Decarbonation of a subducting oceanic crust containing 2 wt.% magnesite would result in a 0.6% density reduction at 30 GPa and 1273 K. Using the new EOS parameters we performed thermodynamic calculations for magnesite decarbonation reactions at pressures to 20 GPa. We also estimated stability of magnesite-bearing assemblages in the lower mantle.  相似文献   
44.
Measurements with a HF Doppler sounder at Kodaikanal (10.2°N, 77.5°E, geomagnetic latitude 0.8°N) showed conspicuous quasi-periodic fluctuations (period 25/35 min) in F region vertical plasma drift, Vz in the interval 0047/0210 IST on the night of 23/24 December, 1991 (Ap = 14, Kp < 4). The fluctuations in F region vertical drift are found to be coherent with variations in Bz (north-south) component of interplanetary magnetic field (IMF), in geomagnetic H/X components at high-mid latitude locations both in the sunlit and dark hemispheres and near the dayside dip equator, suggestive of DP2 origin. But the polarity of the electric field fluctuations at the midnight dip equator (eastward) is the same as the dayside equator inferred from magnetic variations, contrary to what is expected of equatorial DP2. The origin of the coherent occurrence of equatorial electric field fluctuations in the DP2 range of the same sign in the day and night hemispheres is unclear and merits further investigations.  相似文献   
45.
Introduction Tigray, the northern region of Ethiopia (Figure 1), is located between 12°20′~14°30′N and 36° ~ 41°30′E. It is dominated by undulating topo- graphy with many mountains, plateaus, hills, depressions and limited flat lands. The elevation  相似文献   
46.
47.
Unpolarized infrared (IR) reflectance spectra for MgSiO3 ilmenite taken from a single-crystal and from a densly packed polycrystalline sample possessed all eight peaks mandated by symmetry between 337 and 850 cm?1. Polarizations were inferred from intensity differences between the two samples. IR peak positions differ by up to 250 cm?1 from recent calculations, but on average are within 11%. Heat capacity C p calculated from these data by using a Kieffer-type model are within the experimental uncertainty of calorimetric measurements from 170 to 700 K. Outside this range, calculated C p is probably accurate within a few percent, based on recent results for garnets. Calculated entropy is only slightly less accurate, giving S 0 (298.15 K) as 54.1 ±0.5 J/ mol-K, which is 10% lower than recent estimates based on phase equilibria. The slope of the phase boundary between ilmenite and perovskite is used to predict S 0 (298.15 K) of perovskite as 58.7 ±1.4 J/mol-K, which is 10% lower than previous values.  相似文献   
48.
High(C2/c)-low(P21/c) phase transition in clinoenstatite and pigeonite was successfully observed in situ at high temperatures for the first time under a transmission electron microscope. The phase transition was revealed to possess the characteristics of a first-order transition, due to the coexistence of both phases separated by the sharp interfaces and the nucleation-growth process. The diffusionless and time-independent reaction suggests that the transition occurs athermal-martensitically. Furthermore, the small or even negative thermal hysteresis and the interface motion suggest that the transition is not a typical type but a thermoelastic type of the martensitic transformation. This type of the transformation, studied extensively in metallurgy in relation to shape memory effect, is first recognized in rock-forming minerals.  相似文献   
49.
We investigated seasonal changes in carbon demand and flux by mesozooplankton communities at subtropical (S1) and subarctic sites (K2) in the western North Pacific Ocean to compare the impact of mesozooplankton communities on the carbon budget in surface and mesopelagic layers. Fecal pellet fluxes were one order higher at K2 than at S1, and seemed to be enhanced by copepod and euphausiid egestion under high chlorophyll a concentrations. The decrease in pellet volume and the lack of any substantial change in shape composition during sink suggest a decline in fecal pellet flux due to coprorhexy and coprophagy. While respiratory and excretory carbon by diel migrants at depth (i.e., active carbon flux) was similar between the two sites, the actively transported carbon exceeded sinking fecal pellets at S1. Mesozooplankton carbon demand in surface and mesopelagic layers was higher at K2 than S1, and an excess of demand to primary production and sinking POC flux was found during some seasons at K2. We propose that this demand was met by supplementary carbon sources such as feeding on protozoans and fecal pellets at the surface and carnivory of migrants at mesopelagic depths.  相似文献   
50.
Seasonal changes in mesozooplankton biomass and their community structures were observed at time-series stations K2 (subarctic) and S1 (subtropical) in the western North Pacific Ocean. At K2, the maximum biomass was observed during the spring when primary productivity was still low. The annual mean biomasses in the euphotic and 200- to 1000-m layers were 1.39 (day) and 2.49 (night) g C m?2 and 4.00 (day) and 3.63 (night) g C m?2, respectively. Mesozooplankton vertical distribution was bimodal and mesopelagic peak was observed in a 200- to 300-m layer; it mainly comprised dormant copepods. Copepods predominated in most sampling layers, but euphausiids were dominant at the surface during the night. At S1, the maximum biomass was observed during the spring and the peak timing of biomass followed those of chlorophyll a and primary productivity. The annual mean biomasses in the euphotic and 200- to 1000-m layers were 0.10 (day) and 0.21 (night) g C m?2 and 0.47 (day) and 0.26 (night) g C m?2, respectively. Copepods were dominant in most sampling layers, but their mean proportion was lower than that in K2. Mesozooplankton community characteristics at both sites were compared with those at other time-series stations in the North Pacific and with each other. The annual mean primary productivities and sinking POC fluxes were equivalent at both sites; however, mesozooplankton biomasses were higher at K2 than at S1. The difference of biomasses was probably caused by differences of individual carbon losses, population turnover rates, and trophic structures of communities between the two sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号