首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   7篇
  国内免费   1篇
测绘学   3篇
大气科学   6篇
地球物理   26篇
地质学   32篇
海洋学   7篇
天文学   30篇
综合类   4篇
自然地理   15篇
  2023年   1篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   9篇
  2017年   8篇
  2016年   9篇
  2015年   7篇
  2014年   9篇
  2013年   4篇
  2012年   6篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   6篇
  2007年   9篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1984年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
41.
Landslide displacement prediction is an essential component for developing landslide early warning systems. In the Three Gorges Reservoir area (TGRA), landslides experience step-like deformations (i.e., periods of stability interrupted by abrupt accelerations) generally from April to September due to the influence of precipitation and reservoir scheduled level variations. With respect to many traditional machine learning techniques, two issues exist relative to displacement prediction, namely the random fluctuation of prediction results and inaccurate prediction when step-like deformations take place. In this study, a novel and original prediction method was proposed by combining the wavelet transform (WT) and particle swarm optimization-kernel extreme learning machine (PSO-KELM) methods, and by considering the landslide causal factors. A typical landslide with a step-like behavior, the Baishuihe landslide in TGRA, was taken as a case study. The cumulated total displacement was decomposed into trend displacement, periodic displacement (controlled by internal geological conditions and external triggering factors respectively), and noise. The displacement items were predicted separately by multi-factor PSO-KELM considering various causal factors, and the total displacement was obtained by summing them up. An accurate prediction was achieved by the proposed method, including the step-like deformation period. The performance of the proposed method was compared with that of the multi-factor extreme learning machine (ELM), support vector regression (SVR), backward propagation neural network (BPNN), and single-factor PSO-KELM. Results show that the PSO-KELM outperforms the other models, and the prediction accuracy can be improved by considering causal factors.  相似文献   
42.
■■■The paper “Discussion to: Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses by T. Carlà, E. Intrieri, F. Di Traglia, T. Nolesini, G. Gigli and N. Casagli” by Bozzano et al. brings forward new considerations on an issue of extreme concern in landslide risk management. To this day, the ability to predict catastrophic landslide failures from slope surface displacements is a problem dictated more by practical constraints rather than by theoretical uncertainties. In this sense, the development of data interpretation practices is crucial. This short reply provides a few further insights with regard to this subject, also in the context of the recently published literature.  相似文献   
43.
Relative ages of late Cenozoic stratigraphy throughout the Caspian region are referenced to regional stages that are defined by changes in microfauna and associated extreme (>1000 m) variations in Caspian base level. However, the absolute ages of these stage boundaries may be significantly diachronous because many are based on the first occurrence of either transgressive or regressive facies, the temporal occurrence of which should depend on position within a basin. Here, we estimate the degree of diachroneity along the Akchagyl regional stage boundary within the Caspian basin system by presenting two late Miocene‐Pliocene aged measured sections, Sarica and Vashlovani, separated by 50 km and exposed within the Kura fold‐thrust belt in the interior of the Kura Basin. The Kura Basin is a western subbasin of the South Caspian Basin and the sections presented here are located >250 km from the modern Caspian coast. New U‐Pb detrital zircon ages from the Sarica section constrain the maximum depositional age for Productive Series strata, a lithostratigraphic package considered correlative with the 2–3 Myr‐long regional Eoakchagylian or Kimmerian stage that corresponds to a period of extremely low (>500 m below the modern level) Caspian base level. This new maximum depositional age from the Productive Series at Sarica of 2.5 ± 0.2 Ma indicates that the regionally extensive Akchagyl transgression, which ended the deposition of the Productive Series near the Caspian coast at 3.2 Ma, may have appeared a minimum of 0.5 Myr later in the northern interior of the Kura Basin than at the modern Caspian Sea coast. The results of this work have important implications for the tectonic and stratigraphic history of the region, suggesting that the initiation of the Plio‐Pleistocene Kura fold‐thrust belt may have not been as diachronous along strike as previously hypothesized. More generally, these results also provide a measure of the magnitude of diachroneity possible along sequence boundaries, particularly in isolated basins. Comparison of accumulation rates between units in the interior of the Kura subbasin and the South Caspian main basin suggest that extremely large variations in these rates within low‐stand deposits may be important in identifying the presence of subbasins in older stratigraphic packages.  相似文献   
44.
According to the Hyogo Framework for Action, increasing resilience to drought requires the development of a people-centered monitoring and early warning system, or in other words, a system capable of providing useful and understandable information to the community at risk. To achieve this objective, it is crucial to negotiate a credible and legitimate knowledge system, which should include both expert and local knowledge. Although several benefits can be obtained, the integration of local and scientific knowledge to support drought monitoring is still far from being the standard in drought monitoring and early warning. This is due to many reasons, that is, the reciprocal skepticism of local communities and decision makers, and the limits in the capacity to understand and assess the complex web of drought impacts. This work describes a methodology based on the sequential implementation of Cognitive Mapping and Bayesian Belief Networks to collect, structure and analyze stakeholders’ perceptions of drought impacts. The methodology was applied to analyze drought impacts at Lake Trasimeno (central Italy). A set of drought indicators was developed based on stakeholders’ perceptions. A validation phase was carried out comparing the perceived indicators of drought and the physical indicators (i.e., Standard Precipitation Index and the level of the lake). Some preliminary conclusions were drawn concerning the reliability of local knowledge to support drought monitoring and early warning.  相似文献   
45.
Variation in the erodibility of rock units has long been recognized as an important determinant of landscape evolution but has been little studied in landscape evolution models. We use a modified version of the Channel‐Hillslope Integrated Landscape Development (CHILD) model, which explicitly allows for variations in rock strength, to reveal and explore the remarkably rich, complex behavior induced by rock erodibility variations in even very simple geologic settings with invariant climate and tectonics. We study the importance of relative contrasts in erodibility between just two units, the order of these units (whether hard rocks overlie soft or soft rocks overlie hard) and the orientation of the contact between the two units. We emphasize the spatial and temporal evolution of erosion rates, which have important implications for basin analysis, detrital mineral records, and the interpretation of cosmogenic isotope concentrations in detrital samples. Results of the landscape evolution modeling indicate that the stratigraphic order of units in terms of erodibility, the gross orientation of the contact (i.e. dipping away or toward the outlet of the landscape) and the contact dip angle all have measurable effects on landscape evolution, including significant spatial and temporal variations in erosion rates. Steady‐state denudation conditions are unlikely to develop in landscapes with significant contrasts in rock strength in horizontal to moderately tilted rock layers, at least at the scale of the entire landscape. Additionally, our results demonstrate that there is no general relation between rock erodibility and erosion rates in natural settings. Although rock erodibility directly controls the erosion rate constant in our models, it is not uncommon for higher erosion rates to occur in the harder, less erodible rock. Indeed erosion rates may be either greater or less than the rock uplift rate (invariant in time and space in our models) in both hard and soft rocks, depending on the local geology, topography, and the pattern of landscape evolution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
46.
Analysis of climatic series needs pre-processing to attain spatial- and time-consistent homogeneity. The latter, in high-resolution investigations, can rely on the strong correlations among series, which in turn requires a strict fulfilment of the quality standard in terms of completeness. Fifty-nine daily precipitation and temperature series of 50?years from Trentino, northern Italy, were pre-processed for climatic analysis. This study describes: (1) the preliminary gap-filling protocol for daily series, based on geostatistical correlations on both horizontal and vertical domains; (2) an algorithm to reduce inhomogeneity owing to the systematic snowfall underestimation of rain gauges; and (3) the processing protocol to take into account any source of undocumented inhomogeneity in series. This was performed by application of the t test and F-test of R code RHtestV2. This pre-processing shows straightforward results; correction of snowfall measurements re-evaluates attribution of patterns of altitudinal trends in time trends; homogenization increases the strength of the climatic signal and reduces the scattering of time trends, assessed over a few decades, of a factor of 2.  相似文献   
47.
The North Pacific Oscillation (NPO) recently (re-)emerged in the literature as a key atmospheric mode in Northern Hemisphere climate variability, especially in the Pacific sector. Defined as a dipole of sea level pressure (SLP) between, roughly, Alaska and Hawaii, the NPO is connected with downstream weather conditions over North America, serves as the atmospheric forcing pattern of the North Pacific Gyre Oscillation (NPGO), and is a potential mechanism linking extratropical atmospheric variability to El Ni?o events in the tropical Pacific. This paper explores further the forcing dynamics of the NPO and, in particular, that of its individual poles. Using observational data and experiments with a simple atmospheric general circulation model (AGCM), we illustrate that the southern pole of the NPO (i.e., the one near Hawaii) contains significant power at low frequencies (7–10?years), while the northern pole (i.e., the one near Alaska) has no dominant frequencies. When examining the low-frequency content of the NPO and its poles separately, we discover that low-frequency variations (periods >7?years) of the NPO (particularly its subtropical node) are intimately tied to variability in central equatorial Pacific sea surface temperatures (SSTs) associated with the El Ni?o-Modoki/Central Pacific Warming (CPW) phenomenon. This result suggests that fluctuations in subtropical North Pacific SLP are important to monitor for Pacific low-frequency climate change. Using the simple AGCM, we also illustrate that variability in central tropical Pacific SSTs drives a significant fraction of variability of the southern node of the NPO. Taken together, the results highlight important links between secondary modes (i.e., CPW-NPO-NPGO) in Pacific decadal variability, akin to already established relationships between the primary modes of Pacific climate variability (i.e., canonical El Ni?o, the Aleutian Low, and the Pacific Decadal Oscillation).  相似文献   
48.
Predicting the time of failure is a topic of major concern in the field of geological risk management. Several approaches, based on the analysis of displacement monitoring data, have been proposed in recent years to deal with the issue. Among these, the inverse velocity method surely demonstrated its effectiveness in anticipating the time of collapse of rock slopes displaying accelerating trends of deformation rate. However, inferring suitable linear trend lines and deducing reliable failure predictions from inverse velocity plots are processes that may be hampered by the noise present in the measurements; data smoothing is therefore a very important phase of inverse velocity analyses. In this study, different filters are tested on velocity time series from four case studies of geomechanical failure in order to improve, in retrospect, the reliability of failure predictions: Specifically, three major landslides and the collapse of an historical city wall in Italy have been examined. The effects of noise on the interpretation of inverse velocity graphs are also assessed. General guidelines to conveniently perform data smoothing, in relation to the specific characteristics of the acceleration phase, are deduced. Finally, with the aim of improving the practical use of the method and supporting the definition of emergency response plans, some standard procedures to automatically setup failure alarm levels are proposed. The thresholds which separate the alarm levels would be established without needing a long period of neither reference historical data nor calibration on past failure events.  相似文献   
49.
On 24 October 2015, following a period of heavy rainfall, a landslide occurred in the Calatabiano Municipality (Sicily Island, Southern Italy), causing the rupture of a water pipeline supplying water to the city of Messina. Following this event, approximately 250,000 inhabitants of the city suffered critical water shortages for several days. Consequently, on 6 November 2015, a state of emergency was declared (O.C.D.P. 295/2015) by the National Italian Department of Civil Protection (DPC). During the emergency management phase, a provisional by-pass, consisting of three 350-m long pipes passing through the landslide area, was constructed to restore water to the city. Furthermore, on 11 November 2015, a landslide remote-sensing monitoring system was installed with the following purposes: (i) analyse the landslide geomorphological and kinematic features in order to assess the residual landslide risk and (ii) support the early warning procedures needed to ensure the safety of the personnel involved in the by-pass construction and the landslide stabilization works. The monitoring system was based on the combined use of Ground-Based Interferometric Synthetic Aperture Radar (GB-InSAR) and terrestrial laser scanning (TLS). In this work, the preliminary results of the monitoring activities and a remote 3D map of the landslide area are presented.  相似文献   
50.
In extensively glaciarized permafrost areas such as Northern Victoria Land, rock glaciers are quite common and are considered postglacial cryotic landforms. This paper reveals that two rock glaciers in Northern Victoria Land (at Adélie Cove and Strandline) that are located close to the Italian Antarctic Station (Mario Zucchelli Station) should have the same origin, although they were previously mapped as Holocene periglacial landforms and subsequently considered ice‐cored and ice‐cemented rock glaciers, respectively. In fact, by integrating different geophysical investigations and borehole stratigraphy, we show that both landforms have similar internal structures and cores of buried glacier ice. Therefore, this kind of rock glacier is possibly related to the long‐term creep of buried ice rather than to permafrost creep alone. This interpretation can be extended to the larger part of the features mapped as rock glaciers in Antarctica. In addition, a high‐reflective horizon sub‐parallel to the topographic surface was detected in Ground Probing Radar (GPR) data over a large part of the study area. Combining all the available information, we conclude that it cannot be straightforwardly interpreted as the base of the active layer but rather represents the top of a cryo‐lithological unit characterized by ice lenses within sediments that could be interpreted as the transition zone between the active layer and the long‐term permafrost table. More generally, knowledge of the subsurface ice content and, in particular, the occurrence of massive ice and its depth is crucial to make realistic and affordable forecasts regarding thermokarst development and related feedbacks involving GHG emissions, especially in the case of cryosoils rich in carbon content. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号