首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26399篇
  免费   545篇
  国内免费   284篇
测绘学   660篇
大气科学   2083篇
地球物理   5724篇
地质学   9305篇
海洋学   2146篇
天文学   5455篇
综合类   41篇
自然地理   1814篇
  2020年   166篇
  2019年   148篇
  2018年   333篇
  2017年   305篇
  2016年   470篇
  2015年   341篇
  2014年   485篇
  2013年   1279篇
  2012年   557篇
  2011年   873篇
  2010年   715篇
  2009年   992篇
  2008年   915篇
  2007年   880篇
  2006年   904篇
  2005年   770篇
  2004年   800篇
  2003年   750篇
  2002年   755篇
  2001年   621篇
  2000年   629篇
  1999年   600篇
  1998年   569篇
  1997年   575篇
  1996年   478篇
  1995年   471篇
  1994年   449篇
  1993年   423篇
  1992年   385篇
  1991年   343篇
  1990年   394篇
  1989年   302篇
  1988年   332篇
  1987年   367篇
  1986年   326篇
  1985年   477篇
  1984年   516篇
  1983年   530篇
  1982年   422篇
  1981年   417篇
  1980年   432篇
  1979年   376篇
  1978年   392篇
  1977年   345篇
  1976年   370篇
  1975年   337篇
  1974年   381篇
  1973年   368篇
  1972年   230篇
  1971年   184篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The “Nares Strait problem” represents a debate about the existence and magnitude of left-lateral movements along the proposed Wegener Fault within this seaway. Study of Palaeogene Eurekan tectonics at its shorelines could shed light on the kinematics of this fault. Palaeogene (Late Paleocene to Early Eocene) sediments are exposed at the northeastern coast of Ellesmere Island in the Judge Daly Promontory. They are preserved as elongate SW–NE striking fault-bounded basins cutting folded Early Paleozoic strata. The structures of the Palaeogene exposures are characterized by broad open synclines cut and displaced by steeply dipping strike-slip faults. Their fold axes strike NE–SW at an acute angle to the border faults indicating left-lateral transpression. Weak deformation in the interior of the outliers contrasts with intense shearing and fracturing adjacent to border faults. The degree of deformation of the Palaeogene strata varies markedly between the northwestern and southeastern border faults with the first being more intense. Structural geometry, orientation of subordinate folds and faults, the kinematics of faults, and fault-slip data suggest a multiple stage structural evolution during the Palaeogene Eurekan deformation: (1) The fault pattern on Judge Daly Promontory is result of left-lateral strike-slip faulting starting in Mid to Late Paleocene times. The Palaeogene Judge Daly basin formed in transtensional segments by pull-apart mechanism. Transpression during progressive strike-slip shearing gave rise to open folding of the Palaeogene deposits. (2) The faults were reactivated during SE-directed thrust tectonics in Mid Eocene times (chron 21). A strike-slip component during thrusting on the reactivated faults depends on the steepness of the fault segments and on their obliquity to the regional stress axes.Strike-slip displacement was partitioned to a number of sub-parallel faults on-shore and off-shore. Hence, large-scale lateral movements in the sum of 80–100 km or more could have been accommodated by a set of faults, each with displacements in the order of 10–30 km. The Wegener Fault as discrete plate boundary in Nares Strait is replaced by a bundle of faults located mainly onshore on the Judge Daly Promontory.  相似文献   
992.
We present a new three-dimensional SV-wave velocity model for the upper mantle beneath South America and the surrounding oceans, built from the waveform inversion of 5850 Rayleigh wave seismograms. The dense path coverage and the use of higher modes to supplement the fundamental mode of surface waves allow us to constrain seismic heterogeneities with horizontal wavelengths of a few hundred kilometres in the uppermost 400 km of the mantle.The large scale features of our tomographic model confirm previous results from global and regional tomographic studies (e.g. the depth extent of the high velocity cratonic roots down to about 200–250 km).Several new features are highlighted in our model. Down to 100 km depth, the high velocity lid beneath the Amazonian craton is separated in two parts associated with the Guyana and Guapore shields, suggesting that the rifting episode responsible for the formation of the Amazon basin has involved a significant part of the lithosphere. Along the Andean subduction belt, the structure of the high velocity anomaly associated with the sudbduction of the Nazca plate beneath the South American plate reflects the along-strike variation in dip of the subducting plate. Slow velocities are observed down to about 100 km and 150 km at the intersection of the Carnegie and Chile ridges with the continent and are likely to represent the thermal anomalies associated with the subducted ridges. These lowered velocities might correspond to zones of weakness in the subducted plate and may have led to the formation of “slab windows” developed through unzipping of the subducted ridges; these windows might accommodate a transfer of asthenospheric mantle from the Pacific to the Atlantic ocean. From 150 to 250 km depth, the subducting Nazca plate is associated with high seismic velocities between 5°S and 37°S. We find high seismic velocities beneath the Paraná basin down to about 200 km depth, underlain by a low velocity anomaly in the depth range 200–400 km located beneath the Ponta Grossa arc at the southern tip of the basin. This high velocity anomaly is located southward of a narrow S-wave low velocity structure observed between 200 and 500–600 km depth in body wave studies, but irresolvable with our long period datasets. Both anomalies point to a model in which several, possibly diachronous, plumes have risen to the surface to generate the Paraná large igneous province (LIP).  相似文献   
993.
Denitrification rates along a salinity gradient in the eutrophic Neuse River Estuary, North Carolina, were quantified using membrane inlet mass spectrometry (MIMS) within short-term batch incubations. Denitrification rates within the system were highly variable, ranging from 0 to 275 μmol N m−2 h−1. Intrasite variability increased with salinity, but no significant differences were observed across the salinity gradient. Denitrification rates were positively correlated with sediment oxygen demand at the upstream sampling site where sediment organic carbon levels were lowest. This relationship was not observed in the more saline sampling sites. Denitrification rates were highest during winter. On an annual basis, denitrification accounted for 26% of the dissolved inorganic nitrogen and 12% of the total nitrogen supplied to the system.  相似文献   
994.
Zircon, monazite and xenotime crystallized over a temperature interval of several hundred degrees at the magmatic to hydrothermal transition of the Sn and W mineralized Mole Granite. Magmatic zircon and monazite, thought to have crystallized from hydrous silicate melt, were dated by conventional U–Pb techniques at an age of 247.6 ± 0.4 and 247.7 ± 0.5 Ma, respectively. Xenotime occurring in hydrothermal quartz is found to be significantly younger at 246.2 ± 0.5 Ma and is interpreted to represent hydrothermal growth. From associated fluid inclusions it is concluded that it precipitated from a hydrothermal brine ≤ 600 °C, which is below the accepted closure temperature for U–Pb in this mineral. These data are compatible with a two-stage crystallization process: precipitation of zircon and monazite as magmatic liquidus phases in deep crustal magma followed by complete crystallization and intimately associated Sn–W mineralization after intrusion of the shallow, sill-like body of the Mole Granite. Later hydrothermal formation of monazite in a biotite–fluorite–topaz reaction rim around a mineralized vein was dated at 244.4 ± 1.4 Ma, which distinctly postdates the Mole Granite and is possibly related to a younger hidden intrusion and its hydrothermal fluid system.

Obtaining precise age data for magmatic and hydrothermal minerals of the Mole Granite is hampered by uncertainties introduced by different corrections required for multiple highly radiogenic minerals crystallising from evolved hydrous granites, including 230Th disequilibrium due to Th/U fractionation during monazite and possibly xenotime crystallization, variable Th/U ratios of the fluids from which xenotime was precipitating, elevated contents of common lead, and post-crystallization lead loss in zircon, enhanced by the fluid-saturated environment. The data imply that monazite can also survive as a liquidus phase in protracted magmatic systems over periods of 106 years. The outlined model is in agreement with prominent chemical core-rim variation of the zircon.  相似文献   

995.
Slope stability evaluation using Back Propagation Neural Networks   总被引:4,自引:0,他引:4  
The Yudonghe landslide, located in western Hubei Province of China, consists of eastern and western subunits as well as a main landslide mass with upper and lower slip surfaces. As an important landslide close to Shuibuya Dam on the Qing River, its stability is crucial, as the slide might reactivate because of a change in ground-water level caused by filling of the Shuibuya Reservoir. Existing weakness zones, growth of ruptures, the downslope attitude of geologic strata, and water infiltration, which reduced the strength of rocks and soils, have been found to be the most important factors contributing to the Yudonghe landslide. With regard to the landslide processes, it can be noted that the original large-scale slide activity was due to erosion by the Qing River, the second sliding resulted from the fall of blocks from the head scarp, and the final activity was the growth of the eastern and western secondary slides. A base failure was the main type of slope movement, however, it was obvious that more than one sliding event occurred, as inferred from striations and fractures detected by microstructure analysis of soils along the failure surfaces. Slope instability was evaluated by the method of Back Propagation Neural Networks (BPNN), in which a four-layer BPNN model with five input nodes, two hidden layers, and two output nodes was constructed using a training data set of landslide samples throughout the Qing River area. The predicted results of this analysis showed that the factor of safety was 1.10, which indicates that the Yudonghe landslide is currently in a marginally stable condition.  相似文献   
996.
The delivery of volcanogenic sulphur into the upper atmosphere by explosive eruptions is known to cause significant temporary climate cooling. Therefore, phreatomagmatic and phreatoplinian eruptions occurring during the final rifting stages of active flood basalt provinces provide a potent mechanism for triggering climate change.

During the early Eocene, the northeast Atlantic margin was subjected to repeated ashfall for 0.5 m.y. This was the result of extensive phreatomagmatic activity along 3000 km of the opening northeast Atlantic rift. These widespread, predominantly basaltic ashes are now preserved in marine sediments of the Balder Formation and its equivalents, and occur over an area extending from the Faroe Islands to Denmark and southern England. These ash-bearing sediments also contain pollen and spore floras derived from low diversity forests that grew in cooler, drier climates than were experienced either before or after these highly explosive eruptions. In addition, coeval plant macrofossil evidence from the Bighorn Basin, Wyoming, USA, also shows a comparable pattern of vegetation change. The coincidence of the ashes and cooler climate pollen and spore floras in northwest Europe identifies volcanism as the primary cause of climate cooling. Estimates show that whilst relatively few phreatomagmatic eruptive centres along the 3000 km opening rift system could readily generate 0.5–1 °C cooling, on an annual basis, only persistent or repeated volcanic phases would have been able to achieve the long-term cooling effect observed in the floral record. We propose that the cumulative effect of repeated Balder Formation eruptions initiated a biodiversity crisis in the northeast Atlantic margin forests. Only the decline of this persistent volcanic activity, and the subsequent climatic warming at the start of the Eocene Thermal Maximum allowed the growth of subtropical forests to develop across the region.  相似文献   

997.
Continental rift systems and anorogenic magmatism   总被引:1,自引:0,他引:1  
Precambrian Laurentia and Mesozoic Gondwana both rifted along geometric patterns that closely approximate truncated-icosahedral tessellations of the lithosphere. These large-scale, quasi-hexagonal rift patterns manifest a least-work configuration. For both Laurentia and Gondwana, continental rifting coincided with drift stagnation, and may have been driven by lithospheric extension above an insulated and thermally expanded mantle. Anorogenic magmatism, including flood basalts, dike swarms, anorthosite massifs and granite-rhyolite provinces, originated along the Laurentian and Gondwanan rift tessellations. Long-lived volcanic regions of the Atlantic and Indian Oceans, sometimes called hotspots, originated near triple junctions of the Gondwanan tessellation as the supercontinent broke apart. We suggest that some anorogenic magmatism results from decompression melting of asthenosphere beneath opening fractures, rather than from random impingement of hypothetical deep-mantle plumes.  相似文献   
998.
Wallace (in Thermodynamics of crystals, 1972) developed a theorem, rooted in rigid lattice dynamics, which incorporates intrinsic anharmonic effects in solids. The practical application of this theorem in mineral physics is computationally involved and this is the main reason for the theorem not getting the attention it deserves. Because intrinsic anharmonicity is an important issue at the extreme conditions in planetary mantles, we derived a method which removes the computational obstacles in applying this theorem. We extended the theorem to incorporate details of the phonon spectrum and tested our algorithm on forsterite (Mg2SiO4). Using a least squares inversion technique applied to all available experimental data, we show that it results in an accurate representation of thermodynamic properties and sound wave velocities of Mg2SiO4 in its complete pressure–temperature stability range. We also show that the accuracy of our results is not significantly affected by the use of a different equation of state.  相似文献   
999.
1000.
This study documents variations in calcium and nitrate concentrations that suggest changes in recharge pathways in a karst spring. The nitrate concentrations increased at the end of the growing season, showing the importance of the soil zone in the recharge pathway. The increase occurred over just a few days, which may be indicative of a change in contribution of baseflow in different seasons from deep to shallow groundwater. The calcium concentrations decreased several days after storm events. A change in the carbonate equilibrium is hypothesized because chloride was not diluted during these events. The decrease in calcium could be due to outgassing and calcite precipitation in the recharge area when older, higher ionic strength matrix water mixes with stormwater in open conduits. The use of geochemical indicators to better understand recharge pathways benefited from long-term monitoring and periods of daily sampling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号