首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   558篇
  免费   18篇
  国内免费   5篇
测绘学   31篇
大气科学   62篇
地球物理   148篇
地质学   151篇
海洋学   66篇
天文学   60篇
综合类   2篇
自然地理   61篇
  2022年   7篇
  2021年   11篇
  2020年   9篇
  2019年   9篇
  2018年   26篇
  2017年   11篇
  2016年   16篇
  2015年   11篇
  2014年   27篇
  2013年   33篇
  2012年   23篇
  2011年   31篇
  2010年   33篇
  2009年   42篇
  2008年   36篇
  2007年   31篇
  2006年   15篇
  2005年   17篇
  2004年   19篇
  2003年   13篇
  2002年   17篇
  2001年   8篇
  2000年   12篇
  1999年   13篇
  1998年   15篇
  1997年   7篇
  1996年   12篇
  1995年   8篇
  1994年   4篇
  1993年   4篇
  1991年   4篇
  1990年   2篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1974年   3篇
  1971年   3篇
  1970年   4篇
  1958年   1篇
  1955年   1篇
  1952年   1篇
  1949年   1篇
  1943年   1篇
  1940年   1篇
排序方式: 共有581条查询结果,搜索用时 15 毫秒
121.
The microstructure of orographic clouds related to the aerosol present was studied during the second Aerosol Characterisation Experiment (ACE‐2). Very high cloud droplet number concentrations (almost 3000 cm−3) were observed. These high concentrations occurred when clouds formed on a hill slope at Tenerife in polluted air masses originating in Europe that had transported the order of 1000 km over the Atlantic Ocean. The validity of the measured droplet number concentrations was investigated by comparing with measurements of the aerosol upstream of the cloud and cloud interstitial aerosol. Guided by distributions of the ratios between the measurements, three criteria of typically 30% in maximum deviation were applied to the measurements to test their validity. Agreement was found for 88% of the cases. The validated data set spans droplet number concentrations of 150–3000 cm−3. The updraught velocity during the cloud formation was estimated to 2.2 m s−1 by model calculations, which is typical of cumuliform clouds. The results of the present study are discussed in relation to cloud droplet number concentrations previously reported in the literature. The importance of promoting the mechanistic understanding of the aerosol/cloud interaction and the use of validation procedures of cloud microphysical parameters is stressed in relation to the assessment of the indirect climatic effect of aerosols.  相似文献   
122.
Perennial bioenergy crops with deep (>1 m) rooting systems, such as switchgrass (Panicum virgatum L.), are hypothesized to increase carbon storage in deep soil. Deeply rooted plants may also affect soil hydrology by accessing deep soil water for transpiration, which can affect soil water content and infiltration in deep soil layers, thereby affecting groundwater recharge. Using stable H and O isotope (δ2H and δ18O) and 3H values, we studied the soil water conditions at 20–30 cm intervals to depths of 2.4–3.6 m in paired fields of switchgrass and shallow rooted crops at three sites in the southern Great Plains of North America. We found that soil under switchgrass had consistently higher soil water content than nearby soil under shallow-rooted annual crops by a margin of 15%–100%. Soil water content and isotopic depth profiles indicated that hydraulic redistribution of deep soil water by switchgrass roots explained these observed soil water differences. To our knowledge, these are the first observations of hydraulic redistribution in deeply rooted grasses, and complement earlier observations of dynamic soil water fluxes under shallow-rooted grasses. Hydraulic redistribution by switchgrass may be a strategy for drought avoidance, wherein the plant may actively prevent water limitation. This raises the possibility that deeply rooted grasses may be used to passively subsidize soil water to more shallow-rooted species in inter-cropping arrangements.  相似文献   
123.
Estimating the magnitude of Agulhas leakage, the volume flux of water from the Indian to the Atlantic Ocean, is difficult because of the presence of other circulation systems in the Agulhas region. Indian Ocean water in the Atlantic Ocean is vigorously mixed and diluted in the Cape Basin. Eulerian integration methods, where the velocity field perpendicular to a section is integrated to yield a flux, have to be calibrated so that only the flux by Agulhas leakage is sampled. Two Eulerian methods for estimating the magnitude of Agulhas leakage are tested within a high-resolution two-way nested model with the goal to devise a mooring-based measurement strategy. At the GoodHope line, a section halfway through the Cape Basin, the integrated velocity perpendicular to that line is compared to the magnitude of Agulhas leakage as determined from the transport carried by numerical Lagrangian floats. In the first method, integration is limited to the flux of water warmer and more saline than specific threshold values. These threshold values are determined by maximizing the correlation with the float-determined time series. By using the threshold values, approximately half of the leakage can directly be measured. The total amount of Agulhas leakage can be estimated using a linear regression, within a 90% confidence band of 12 Sv. In the second method, a subregion of the GoodHope line is sought so that integration over that subregion yields an Eulerian flux as close to the float-determined leakage as possible. It appears that when integration is limited within the model to the upper 300 m of the water column within 900 km of the African coast the time series have the smallest root-mean-square difference. This method yields a root-mean-square error of only 5.2 Sv but the 90% confidence band of the estimate is 20 Sv. It is concluded that the optimum thermohaline threshold method leads to more accurate estimates even though the directly measured transport is a factor of two lower than the actual magnitude of Agulhas leakage in this model.  相似文献   
124.
Temporal trends in mercury concentrations ([Hg]) during the last two to three decades were determined in liver of shorthorn sculpin, ringed seal and Atlantic walrus from northwest Greenland (NWG, 77 degrees N) and in liver of shorthorn sculpin and ringed seal from central west Greenland (CWG, 69 degrees N) during the last decade. Stable-nitrogen (delta(15)N) and carbon (delta(13)C) isotope values were determined in muscle of ringed seals to provide insight into potential trophic level changes through time. Log-linear regressions on annual median [Hg] did not reveal any temporal trend in shorthorn sculpin from CWG and NWG and walrus from NWG. In ringed seals from NWG, an increase in [Hg] of 7.8% per year was observed. When based on delta(15)N-adjusted [Hg] this rate increased to 8.5% but was still non-significant. In ringed seal from CWG no trend was found in [Hg] during the period 1994-2004. However, during the last part of the period (1999-2004) the [Hg] increased significantly. Including tissue delta(15)N values as a covariate had a marked effect on these results. The annual changes in delta(15)N-adjusted [Hg] was estimated to -5.0% for the whole period and 2.2% during the last 5 years compared to -1.3% and 12.4%, respectively, for the non-adjusted [Hg].  相似文献   
125.
Abstract— We describe the results of a variety of model calculations for predictions of observable results of the LCROSS mission to be launched in 2009. Several models covering different aspects of the event are described along with their results. Our aim is to bracket the range of expected results and produce a useful guide for mission planning. In this paper, we focus on several different questions, which are modeled by different methods. The questions include the size of impact crater, the mass, velocity, and visibility of impact ejecta, and the mass and temperature of the initial vapor plume. The mass and velocity profiles of the ejecta are of primary interest, as the ejecta will be the main target of the S‐S/C observations. In particular, we focus on such quantities as the amount of mass that reaches various heights. A height of 2 km above the target is of special interest, as we expect that the EDUS impact will take place on the floor of a moderate‐sized crater ?30 km in diameter, with a rim height of 1–2 km. The impact ejecta must rise above the crater rim at the target site in order to scatter sunlight and become visible to the detectors aboard the S‐S/C. We start with a brief discussion of crater scaling relationships as applied to the impact of the EDUS second stage and resulting estimated crater diameter and ejecta mass. Next we describe results from the RAGE hydrocode as applied to modeling the short time scale (t 0.1 s) thermal plume that is expected to occur immediately after the impact. We present results from several large‐scale smooth‐particle hydrodynamics (SPH) calculations, along with results from a ZEUS‐MP hydrocode model of the crater formation and ejecta mass‐velocity distribution. We finish with two semi‐analytic models, the first being a Monte Carlo model of the distribution of expected ejecta, based on scaling models using a plausible range of crater and ejecta parameters, and the second being a simple model of observational predictions for the shepherding spacecraft (S‐S/C) that will follow the impact for several minutes until its own impact into the lunar surface. For the initial thermal plume, we predict an initial expansion velocity of ?7 km s?1, and a maximum temperature of ?1200 K. Scaling relations for crater formation and the SPH calculation predict a crater with a diameter of ?15 m, a total ejecta mass of ?106kg, with ?104kg reaching an altitude of 2 km above the target. Both the SPH and ZEUS‐MP calculations predict a maximum ejecta velocity of ?1 km s?1. The semi‐analytic Monte Carlo calculations produce more conservative estimates (by a factor of ?5) for ejecta at 2 km, but with a large dispersion in possible results.  相似文献   
126.
The spatial and temporal distributions of marine cold air outbreaks (MCAOs) over the northern North Atlantic have been investigated using re-analysis data for the period from 1958 to 2007. MCAOs are large-scale outbreaks of cold air over a relatively warm ocean surface. Such conditions are known to increase the severity of particular types of hazardous mesoscale weather phenomena. We used a simple index for identifying MCAOs: the vertical potential temperature gradient between the sea surface and 700 hPa. It was found that atmospheric temperature variability is considerably more important than the sea surface temperature variability in governing both the seasonal and the inter-annual variability of MCAOs. Furthermore, a composite analysis revealed that a few well-defined and robust synoptic patterns are evident during MCAOs in winter. Over the Labrador and Irminger Seas the MCAO index was found to have a correlation of 0.70 with the North Atlantic Oscillation index, while over the Barents Sea a negative correlation of 0.42 was found.  相似文献   
127.
Overbank sediments contaminated with metalliferous minerals are a source of toxic metals that pose risks to living organisms. The overbank sediments from the Geul river in Belgium contain 4000-69,000 mg/kg Zn as a result of mining and smelting activities, principally during the 19th century. Three main Zn species were identified by powder Zn K-edge EXAFS spectroscopy: smithsonite (ZnCO3), tetrahedrally coordinated sorbed Zn (sorbed IVZn) and Zn-containing trioctahedral phyllosilicate. Smithsonite is a primary mineral, which accounts for approximately 20-60% of the Zn in sediments affected by mining and smelting of oxidized Zn ores (mostly carbonates and silicates). This species is almost absent in sediments affected by mining and smelting of both sulphidic (ZnS, PbS) and oxidized ores, presumably because of acidic dissolution associated with the oxidation of sulphides, as suggested by the lower pH of this second type of sediment (pH(CaCl2) <7.0 vs. pH(CaCl2) >7.0 for the first type). Thus, sulphide minerals in sediment deposits can act as a secondary source of dissolved metals by a chemical process analogous to acid mine drainage. The sorbed IVZn component ranges up to approximately 30%, with the highest proportion occurring at pH(CaCl2) <7.0 as a result of the readsorption of dissolved Zn2+ on sediments constituents. Kerolite-like Zn-rich phyllosilicate is the major secondary species in all samples, and in some the only detected species, thus providing the first evidence for pervasive sequestration of Zn into this newly formed precipitate at the field scale.  相似文献   
128.
129.
A regional-scale numerical groundwater model is used to study the impacts of replacing surface-water use with groundwater wells to improve low-flow stream conditions for endangered species within the Bertrand and Fishtrap watersheds, southern British Columbia, Canada and Washington, USA. Stream response functions ranging from 0 to 1.0 were calculated for individual wells placed within a steady-state groundwater flow model at varying distances from the streams to determine the impact that these replacement wells, operating under sustained pumping rates, would have on summer instream flows. Lower response ratios indicate groundwater pumping will have less of an impact on streamflow than taking an equivalent amount of water directly from a surface-water source. Results show that replacing surface-water use with groundwater withdrawals may be a viable alternative for increasing summer streamflows. Assuming combined response factors should be ≤0.5 for irrigators to undergo the expense of installing new wells, ~57% of the land area within 0.8 km of Bertrand Creek would be suitable for replacement wells. Similarly, 70% of the land area within 0.8 km of Fishtrap Creek was found to be appropriate. A visual analysis tool was developed using STELLA to allow stakeholders to quickly evaluate the impact associated with moving their water right.  相似文献   
130.
The inflow of Atlantic Water to the Nordic seas from mid–late Younger Dryas to earliest Holocene (12 450–10 000 a BP) is reconstructed on the basis of a high‐resolution core (LINK14) from 346 m water depth on the east Faroe shelf. We have analysed the distribution of planktic and benthic foraminifera, stable isotopes and ice‐rafted debris (IRD), and calculated absolute temperatures and salinities by transfer functions. During the investigated time period there was almost continuous inflow of Atlantic Water to the Nordic seas. Deposition of IRD during the mid–late Younger Dryas and Pre‐Boreal coolings indicates the presence of melting icebergs and that summer sea surface temperatures were low. The east–west temperature gradient across the Faroe–Shetland Channel was much steeper than today. The cold conditions around the Faroe Islands are attributed to stronger East Greenland and East Icelandic currents than at present. The near‐continuous inflow of Atlantic Water is consistent with published evidence suggesting that deep convection took place in the Nordic seas, although the convection sites probably had shifted to a more easterly position than at present. Around the time of deposition of the Saksunarvatn Tephra c. 10 350 a BP, sea surface temperatures increased to the present level. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号