首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   10篇
测绘学   8篇
大气科学   102篇
地球物理   54篇
地质学   125篇
海洋学   4篇
天文学   27篇
综合类   1篇
自然地理   11篇
  2022年   3篇
  2021年   3篇
  2020年   7篇
  2018年   6篇
  2017年   9篇
  2016年   10篇
  2015年   11篇
  2014年   14篇
  2013年   17篇
  2012年   11篇
  2011年   17篇
  2010年   23篇
  2009年   11篇
  2008年   6篇
  2007年   9篇
  2006年   15篇
  2005年   9篇
  2004年   16篇
  2003年   11篇
  2002年   8篇
  2001年   9篇
  2000年   6篇
  1999年   11篇
  1998年   7篇
  1996年   2篇
  1995年   6篇
  1994年   8篇
  1992年   6篇
  1991年   3篇
  1990年   8篇
  1989年   2篇
  1988年   4篇
  1986年   3篇
  1984年   5篇
  1983年   5篇
  1981年   3篇
  1980年   2篇
  1975年   2篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
  1967年   1篇
  1957年   1篇
  1955年   1篇
  1954年   3篇
  1951年   1篇
  1940年   1篇
  1936年   1篇
  1929年   1篇
排序方式: 共有332条查询结果,搜索用时 46 毫秒
141.
Tunnel valleys are common throughout the terrain of the Saginaw Lobe of the Laurentide Ice Sheet in southern Michigan. The set of valleys described in this paper is regularly spaced in a radial pattern behind the Kalamazoo Moraine, an ice‐marginal position formed during retreat from the Last Glacial Maximum. These valleys are divided into proximal and distal groups lying north and south, respectively, of a major river valley that cross‐cuts the tunnel valleys at right angles. Based on a series of rotasonic borings and core analysis, the proximal valleys are shallow, contain minimal sediment fill, and overlie fine‐grained diamicton and glaciolacustrine sediment, whereas the distal valleys are deeply incised into the substrate and are partially filled with coarse sediment. The distal valleys terminate within a broad zone of high‐relief, hummocky topography representing stagnation and collapse behind the Kalamazoo ice margin. The proximal valleys occur within a more subdued landscape located farther from the ice margin. Although some elements of existing genetic models are consistent with these valleys, none appears to be completely compatible with their stratigraphy and morphology. Initial incision of the valleys could have involved short‐lived moderate‐ to high‐discharge flows, followed by deposition during or after the events. The deep incision and thick, coarse sediment in distal valleys in the stagnant marginal zone probably involved supraglacial meltwater draining to the bed as the margin downwasted. Fining‐upward eskers inset into the valleys were formed by flows of declining energy in small late‐stage conduits.  相似文献   
142.
For the insurance and reinsurance industries, earthquake loss estimation is crucial not only to adequately price its product but also to manage the accumulation risk in the face of the ever-increasing exposure in highly seismic regions. Changes in the built environment and a continuously evolving earthquake science make it a necessity for the industry to constantly refine earthquake loss estimation models. In particular, it has been recognized for a long time that the vulnerability of buildings to ground shaking is a key parameter in any earthquake risk model. Current methods tend either to rely on the limited historical damage and loss data or on the numerical simulation of the response of individual buildings to the ground-shaking produced by earthquakes. Although both methods have their advantages and pitfalls, we are proposing here a simple solution, using transparent input data, that can be realistically used for the needs of the insurance and reinsurance industry, whether detailed information about the insured structures is available or not. The resulting product is known as GEVES (Global Earthquake Vulnerability Estimation System). It is primarily intended for evaluating the mean damage ratio (MDR) suffered by a portfolio of buildings classified by use, under the action of a given earthquake scenario (i.e. an earthquake of given size at a given distance from the portfolio of buildings). A key assumption was that macroseismic intensity rather than spectral displacement would be the basis of loss estimation. The paper describes the model with emphasis on its structure and the justification for the assumptions made. In addition to a new set of earthquake vulnerability functions, the paper also provides recommendations on some aspects of the earthquake hazard, in particular about how to define macroseismic intensity at the site of interest, for a given earthquake scenario. This paper also discusses validation of the GEVES model against calculated vulnerability approaches, and the treatment of uncertainty within the model.  相似文献   
143.
The paper deals with the modeling of some aspects, such as the formulation of constitutive equations for sediment material or finite element approach for basin analysis, related to mechanical compaction in sedimentary basins. In addition to compaction due to gravity forces and pore‐pressure dissipation, particular emphasis is given to the study of deformation induced by tectonic sequences. The numerical model relies upon the implementation of a comprehensive constitutive model for the sediment material formulated within the framework of finite poroplasticity. The theoretical model accounts for both hydromechanical and elasticity–plasticity coupling due to the effects of irreversible large strains. From the numerical viewpoint, a finite element procedure specifically devised for dealing with sedimentary basins as open systems allows to simulate within a two‐dimensional setting the process of sediment accretion or erosion. Several basin simulations are presented. The main objective is to analyze the behavior of a sedimentary basin during the different phases of its life cycle: accretion phase, pore‐pressure dissipation phase and compressive/extensional tectonic motions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
144.
Radio relics have been discovered in many galaxy clusters. They are believed to trace shock fronts induced by cluster mergers. Cosmological simulations allow us to study merger shocks in detail since the intra-cluster medium is heated by shock dissipation. Using high resolution cosmological simulations, identifying shock fronts and applying a parametric model for the radio emission allows us to simulate the formation of radio relics. We analyze a simulated shock front in detail. We find a rather broad Mach number distribution. The Mach number affects strongly the number density of relativistic electrons in the downstream area, hence, the radio luminosity varies significantly across the shock surface. The abundance of radio relics can be modeled with the help of the radio power probability distribution which aims at predicting radio relic number counts. Since the actual electron acceleration efficiency is not known, predictions for the number counts need to be normalized by the observed number of radio relics. For the characteristics of upcoming low frequency surveys we find that about thousand relics are awaiting discovery.  相似文献   
145.
We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4).Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project.We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow.Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks.We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.  相似文献   
146.
A comparative in situ LA-ICP MS trace-element study on pyrite from three different, variably auriferous, Archaean to Palaeoproterozoic palaeoplacer deposits in the Ouro Fino Syncline (Quadrilátero Ferrífero; Brazil), the Elliot Lake area north of Lake Huron (SE Canada) and several deposits within the Witwatersrand Basin (South Africa) revealed systematic differences between morphologically different pyrite types and between the various palaeoplacer deposits. Especially the Ni and Au concentrations as well as Co/Ni and Mo/Ni ratios were found to be systematically different in detrital compact, detrital porous and post-sedimentary/hydrothermal pyrite grains from different source areas. High Co/Ni ratios and low Au concentrations are typical of post-sedimentary pyrite, which is hydrothermal in origin. In contrast, relatively low Co/Ni ratios and high Au contents characterise detrital porous banded and concentric pyrite grains (Au > 1 ppm), which are syn-sedimentary in origin. In the Elliot Lake area and the Witwatersrand Basin, detrital compact rounded pyrite is characterised by high Co/Ni ratios, which is in agreement with derivation from a hydrothermal source. Low Au concentrations in this pyrite type support the contention of the gold and the pyrite in these deposits coming from different source rocks. In contrast, derivation from an originally diagenetic pyrite is suggested for the detrital compact pyrite in the Ouro Fino Syncline because of low to intermediate Co/Ni ratios. High Au contents may indicate a genetic relationship between pyrite and gold there. Systematic differences exist between the three areas with respect to Au, Ni, Co, Mo and Cu distributions in detrital pyrite, which reflects differences in the provenance. A predominantly mafic/ultramafic source is indicated for the Ouro Fino, a felsic source for the Elliot Lake, and a mixed felsic–mafic provenance for the Witwatersrand pyrite populations. Independently of pyrite type, the higher Au endowment of the studied Witwatersrand and Ouro Fino conglomerates are also reflected by an overall higher Au concentration in the respective pyrite grains compared to the relatively Au-poor samples from Elliot Lake. In general, a strong positive correlation between Au and Pb levels in the various pyrite grains is noted. Analogous to Pb, which is well known for not being easily accommodated in the pyrite crystal lattice but occurring as discrete PbS phases, Au is considered to be present mainly in the form of discrete Au phases in minute pores and interstices of the pyrite grains rather than within the pyrite lattice.  相似文献   
147.
Multiple origins of zircons in jadeitite   总被引:1,自引:1,他引:0  
Jadeitites form from hydrothermal fluids during high pressure metamorphism in subduction environments; however, the origin of zircons in jadeitite is uncertain. We report ion microprobe analyses of δ18O and Ti in zircons, and bulk δ18O data for the jadeitite whole-rock from four terranes: Osayama serpentinite mélange, Japan; Syros mélange, Greece; the Motagua Fault zone, Guatemala; and the Franciscan Complex, California. In the Osayama jadeitite, two texturally contrasting groups of zircons are identified by cathodoluminescence and are distinct in δ18O: featureless or weakly zoned zircons with δ18O = 3.8 ± 0.6‰ (2 SD, VSMOW), and zircons with oscillatory or patchy zoning with higher δ18O = 5.0 ± 0.4‰. Zircons in phengite jadeitite from Guatemala and a jadeitite block from Syros have similar δ18O values to the latter from Osayama: Guatemala zircons are 4.8 ± 0.7‰, and the Syros zircons are 5.2 ± 0.5‰ in jadeitite and 5.2 ± 0.4‰ in associated omphacitite, glaucophanite and chlorite-actinolite rinds. The δ18O values for most zircons above fall within the range measured by ion microprobe in igneous zircons from oxide gabbros and plagiogranites in modern ocean crust (5.3 ± 0.8‰) and measured in bulk by laser fluorination of zircons in equilibrium with primitive magma compositions or the mantle (5.3 ± 0.6‰). Titanium concentrations in these zircons vary between 1 and 19 ppm, within the range for igneous zircons worldwide. Values of δ18O (whole-rock) ≅ δ18O (jadeite) and vary from 6.3 to 10.1‰ in jadeitites in all four areas.  相似文献   
148.
Analysis of profiles of meteorological measurements from a 160 m high mast at the National Test Site for wind turbines at Høvsøre (Denmark) and at a 250 m high TV tower at Hamburg (Germany) shows that the wind profile based on surface-layer theory and Monin-Obukhov scaling is valid up to a height of 50–80 m. At higher levels deviations from the measurements progressively occur. For applied use an extension to the wind profile in the surface layer is formulated for the entire boundary layer, with emphasis on the lowest 200–300 m and considering only wind speeds above 3 m s?1 at 10 m height. The friction velocity is taken to decrease linearly through the boundary layer. The wind profile length scale is composed of three component length scales. In the surface layer the first length scale is taken to increase linearly with height with a stability correction following Monin-Obukhov similarity. Above the surface layer the second length scale (L MBL ) becomes independent of height but not of stability, and at the top of the boundary layer the third length scale is assumed to be negligible. A simple model for the combined length scale that controls the wind profile and its stability dependence is formulated by inverse summation. Based on these assumptions the wind profile for the entire boundary layer is derived. A parameterization of L MBL is formulated using the geostrophic drag law, which relates friction velocity and geostrophic wind. The empirical parameterization of the resistance law functions A and B in the geostrophic drag law is uncertain, making it impractical. Therefore an expression for the length scale, L MBL , for applied use is suggested, based on measurements from the two sites.  相似文献   
149.
Results from geophysical explorations of three deep valleys, selected from different tectonic regimes in the Eastern Alps (Ötz-, Oichten-, and Drau Valley), are presented and discussed. Ongoing tectonic deformation may use tectonic structures related to these valleys. However, seismic activity is low there. During the Würm ice age, the thickness of the ice cover ranged between 300 and 1,500 m above present ground elevation. The geophysical investigations comprised reflection seismology, gravity- and resistivity surveys. The maximum depth down to the erosional base of the valleys varies from ~340 to 700 m. Distinct layer packages of the valley-infill at depths greater than 250 m were termed “old valley-fill”. Geophysical parameters and a comparison with the reflection seismic image of an intermediate layer at the recent Pasterze glacier suggest that the top of the “old valley-fill” represents the glacier bed during the decay of the Würm glaciation. Deep erosion is not related to high basal shear stress. The confluence of tributary glaciers is apparently not a significant factor for deep erosion in our examples of deep alpine valleys. We conclude that deep erosion may be related to high water pressure at the glacier bed, supported by specific processes of tectonic weakening.  相似文献   
150.
The Cassini Imaging Science Subsystem (ISS) and Composite Infrared Spectrometer (CIRS) reported a North Equatorial Belt (NEB) wave in Jupiter's atmosphere from optical images [Porco, C.C., and 23 colleagues, 2003. Science 299, 1541-1547] and thermal maps [Flasar, F.M., and 39 colleagues, 2004. Nature 427, 132-135], respectively. The connection between the two waves remained uncertain because the two observations were not simultaneous. Here we report on simultaneous ISS images and CIRS thermal maps that confirm that the NEB wave shown in the ISS ultraviolet (UV1) and strong methane band (MT3) images is correlated with the thermal wave in the CIRS temperature maps, with low temperatures in the CIRS maps (upwelling) corresponding to dark regions in the UV1 images (UV-absorbing particles) and bright regions in the MT3 images (high clouds and haze). The long period of the NEB wave suggests that it is a planetary (Rossby) wave. The combined observations from the ISS and CIRS are utilized to discuss the vertical and meridional propagation of the NEB wave, which offers a possible explanation for why the NEB wave is confined to specific latitudes and altitudes. Further, the ISS UV1 images reveal a circumpolar wave centered at 48.5° S (planetocentric) and probably located in the stratosphere, as suggested by the ISS and CIRS observations. The simultaneous comparison between the ISS and CIRS also implies that the large dark oval in the polar stratosphere of Jupiter discovered in the ISS UV1 images [Porco, C.C., and 23 colleagues, 2003. Science 299, 1541-1547] is the same feature as the warm regions at high northern latitudes in the CIRS 1-mbar temperature maps [Flasar, F.M., and 39 colleagues, 2004. Nature 427, 132-135]. This comparison supports a previous suggestion that the dark oval in the ISS UV1 images is linked to auroral precipitation and heating [Porco, C.C., and 23 colleagues, 2003. Science 299, 1541-1547].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号