首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   8篇
测绘学   8篇
大气科学   12篇
地球物理   36篇
地质学   52篇
海洋学   16篇
天文学   17篇
自然地理   24篇
  2024年   2篇
  2023年   2篇
  2022年   6篇
  2021年   8篇
  2020年   15篇
  2019年   6篇
  2018年   7篇
  2017年   8篇
  2016年   12篇
  2015年   4篇
  2014年   11篇
  2013年   6篇
  2012年   10篇
  2011年   7篇
  2010年   6篇
  2009年   11篇
  2008年   10篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1997年   3篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
51.
In this paper, we develop a procedure for subsurface characterization of a fractured porous medium. The characterization involves sampling from a representation of a fracture’s permeability that has been suitably adjusted to the dynamic tracer cut measurement data. We propose to use a type of dual-porosity, dual-permeability model for tracer flow. This model is built into the Markov chain Monte Carlo (MCMC) method in which the permeability is sampled. The Bayesian statistical framework is used to set the acceptance criteria of these samples and is enforced through sampling from the posterior distribution of the permeability fields conditioned to dynamic tracer cut data. In order to get a sample from the distribution, we must solve a series of problems which requires a fine-scale solution of the dual model. As direct MCMC is a costly method with the possibility of a low acceptance rate, we introduce a two-stage MCMC alternative which requires a suitable coarse-scale solution method of the dual model. With this filtering process, we are able to decrease our computational time as well as increase the proposal acceptance rate. A number of numerical examples are presented to illustrate the performance of the method.  相似文献   
52.
Sao Tome and Principe is a small insular African country extremely vulnerable to rising sea levels and impacts such as inundation, shore line change, and salt water intrusion into underground aquifers. Projections of climate change have considered coarse model resolutions. The objective of this work is to dynamically downscale the global model projections to 4-km resolution and to assess the climate change in the Sao Tome and Principe islands. The global climate projections are provided by the Canadian Earth System Model under two Representative Concentration Pathways greenhouse gas scenarios, RCP4.5 and RCP8.5. The downscaling is produced by the Eta regional climate model. The baseline period is taken between 1971 and 2000, and the future climate period is taken between 2041 and 2070. The 2-m temperature simulations show good agreement with station data. The model simulates temperature more accurately than precipitation. The precipitation simulations systematically show underestimation and delay of the rainy and the dry seasons by about 1 month, a feature inherited from the global climate model. In the middle of the 21st century, projections show the strongest warming in the elevated parts of the Sao Tome Island, especially in February under RCP8.5. Warmer nights and warmer days become more frequent in the islands when compared with those in the present. While under RCP4.5, precipitation increases in the islands; under RCP8.5, it decreases everywhere in both islands. Heavy precipitation rates should increase, especially in the south-southwestern parts of the Sao Tome islands. Detailed spatial variability of the temperature and precipitation changes in the islands can only be revealed at very high spatial model resolution. Implications for the potential energy production from two major river basins are assessed in this work.  相似文献   
53.
Epistemic uncertainties arise during the estimation of hydraulic gradients in unconfined aquifers due to planar approximation of the water table as well as data gaps arising from factors such as instrument failures and site inaccessibility. A multidimensional fuzzy least-squares regression approach is proposed here to estimate hydraulic gradients in situations where epistemic uncertainty is present in the observed water table measurements. The hydraulic head at a well is treated as a normal (Gaussian) fuzzy variable characterized by a most likely value and a spread. This treatment results in hydraulic gradients being characterized as normal fuzzy numbers as well. The multidimensional fuzzy least-squares regression has an exact analytical form and as such can be implemented easily using matrix algebra methods. However, the method was noted to be sensitive to round-off and truncation errors when the epistemic uncertainties are small. A closeness index based on the cardinality of a fuzzy number is used to evaluate how well the regression model fits the fuzzy hydraulic head observations. A fuzzy Euclidian distance measure is used to compare two fuzzy numbers and to evaluate how fuzziness in the observed hydraulic heads affects the fuzziness in the estimated hydraulic gradients. The Euclidian distance measure is also used to ascertain the influence of each well on the fuzzy hydraulic gradient estimation. The fuzzy regression framework is illustrated by applying it to evaluate hydraulic gradients in the unconfined portion of the Gulf Coast aquifer in Goliad County, TX. The results from the case-study indicate that there is greater uncertainty associated with the estimation of the hydraulic gradients in the vertical (Z-axis) direction. The epistemic uncertainties in the hydraulic head data at the wells have a significant impact on the gradient estimates when they are of the same order of magnitude as the most likely values of the observed heads. The influence analysis indicated that 5 of the 13 wells in the network had a critical influence on at least one of the hydraulic gradients. Three wells along the northeastern section of the study area and bordering the Victoria County were noted to have the least influence on the regression estimates. The fuzzy regression framework along with the associated goodness-of-fit and influence measures provides a useful set of tools to characterize the uncertainties in the hydraulic heads and gradients arising from data gaps and planar water table approximation.  相似文献   
54.
55.
The Coupling State of an Idealized Stable Boundary Layer   总被引:1,自引:1,他引:0  
The coupling state between the surface and the top of the stable boundary layer (SBL) is investigated using four different schemes to represent the turbulent exchange. An idealized SBL is assumed, with fixed wind speed and temperature at its top. At the surface, two cases are considered, first a constant temperature, 20 K lower than the SBL top, and later a constant 2 K h−1 cooling rate is assumed for 10 h after a neutral initial condition. The idealized conditions have been chosen to isolate the influence of the turbulence formulations on the coupling state, and the intense stratification has the purpose of enhancing such a response. The formulations compared are those that solve a prognostic equation for turbulent kinetic energy (TKE) and those that directly prescribe turbulence intensity as a function of atmospheric stability. Two TKE formulations are considered, with and without a dependence of the exchange coefficients on stability, while short and long tail stability functions (SFs) are also compared. In each case, the dependence on the wind speed at the SBL top is considered and it is shown that, for all formulations, the SBL experiences a transition from a decoupled state to a coupled state at an intermediate value of mechanical forcing. The vertical profiles of potential temperature, wind speed and turbulence intensity are shown as a function of the wind speed at the SBL top, both for the decoupled and coupled states. The formulation influence on the coupling state is analyzed and it is concluded that, in general, the simple TKE formulation has a better response, although it also tends to overestimate turbulent mixing. The consequences are discussed.  相似文献   
56.
Mathematical Geosciences - The task of optimal sampling for the statistical simulation of a discrete random field is addressed from the perspective of minimizing the posterior uncertainty of...  相似文献   
57.
Hydroelectric reservoirs generate energy without significant combustion of fossil fuels. However, these systems can, potentially, emit greenhouse gases (GHG’s) at a rate which may be significant at the global scale, and, possible, co-equal, per kilowatt-hour, to that from conventional coal or oil-fired systems. Although much of the new construction of hydroelectric reservoirs is in the tropics, most of the data on GHG emissions comes from temperate regions. Further, much of the existing data on reservoir gas emissions comes from single sites, usually near the terminal dams. Large tropical reservoirs often involve the impoundments of river systems with complex morphology which in turn can cause spatial heterogeneity in gas flux. We evaluated spatial and seasonal variability in CO2 concentrations and gas flux for five large (50–1,400 km2) reservoirs in the Cerrado region of Brazil. Most of data set (87% of all measurements) showed CO2 supersaturation and net efflux to the atmosphere. There was as much or more variation in pCO2 over space and among seasons. The large studied reservoirs showed different zones in terms of CO2 emission because those fluxes are dependent on flooded biomass, watershed input of organic matter and dam operation regime. Here we demonstrate that the reservoirs in the Brazilian Cerrado have low rates of CO2 emissions compared to existing global comparisons. Our results suggest that ignoring the spatial variability can lead to more than 25% error in total system gas flux.  相似文献   
58.
We investigated the distribution of naturally occurring geochemical tracers (222Rn, 223Ra, 224Ra, 226Ra, CH4, δ18O, and δ2H) in the water column and adjacent groundwater of Mangueira Lagoon as proxies of groundwater discharge. Mangueira Lagoon is a large (90 km long), shallow (4–5 m deep), fresh, and non-tidal coastal lagoon in southern Brazil surrounded by extensively irrigated rice plantations and numerous irrigation canals. We hypothesized that the annual, intense irrigation for rice agriculture creates extreme conditions that seasonally change groundwater discharge patterns in the adjacent lagoon. We further supposed that dredging of irrigation canals alters groundwater fluxes.

While the activities of 222Rn in shallow groundwater were 2–3 orders of magnitude higher than in surface water, CH4 and radium isotopes were only 1 order of magnitude higher. Therefore, 222Rn appears to be the preferred groundwater tracer in this system. Radon concentrations and conductivities were dramatically higher near the pump house of rice irrigation canals, consistent with a groundwater source. Modeling of radon inventories accounting for total inputs (groundwater advection, diffusion from sediments, and decay of 226Ra) and losses (atmospheric evasion, horizontal mixing and decay) indicated that groundwater advection rates in the irrigation canals (25 cm/d) are over 2 orders of magnitude higher than along the shoreline (0.1 cm/d). Nearly 75% of the total area of the canals is found in the southern half of the lagoon, where groundwater inputs seem to be higher as also indicated by methane and stable isotope trends. In spite of the relatively small area of the canals, we estimate that they contribute nearly 70% of the total (57,000 m3/d) groundwater input into the entire Mangueira Lagoon. We suggest that the dredging of these canals cut through aquitards which previously restricted upward advection from the underlying permeable strata. The irrigation channels may therefore represent an important but previously overlooked source of nutrients and other dissolved chemicals derived from agricultural practices into the lagoon.  相似文献   

59.
A pedogeochemical exploratory survey of gold deposits was carried out in the region of São Sepé (southernmost Brazil). The region comprises a predominantly metamorphosed belt of volcanoclastics, sediments, serpentinites, basalts, gabbros, chert, tuffs, and banded iron formation of the Proterozoic age. The anomalies were identified first by stream sediment heavy mineral survey at the regional scale of exploration. Once spatial continuity was modeled, ordinary block kriging was performed to generate geochemical maps. Indicator block kriging also was used as an alternative in analyzing and interpreting geochemical data. A novel approach is proposed, which combines both ordinary and indicator kriging for delineating geochemical anomalies. Probability maps proved to be appropriate for selecting new sites for further exploration. Gold anomalies in soils trending NE were well defined by geostatistical analysis and subsequently confirmed by drilling.  相似文献   
60.
Theoretical and Applied Climatology - Gridded precipitation products from remote sensing are currently available and could potentially enhance the use of precipitation data in regions with sparse...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号