首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31963篇
  免费   1835篇
  国内免费   3188篇
测绘学   2308篇
大气科学   3330篇
地球物理   6337篇
地质学   15749篇
海洋学   2260篇
天文学   1842篇
综合类   2849篇
自然地理   2311篇
  2024年   35篇
  2023年   132篇
  2022年   399篇
  2021年   473篇
  2020年   370篇
  2019年   453篇
  2018年   5152篇
  2017年   4437篇
  2016年   3027篇
  2015年   688篇
  2014年   632篇
  2013年   597篇
  2012年   1587篇
  2011年   3304篇
  2010年   2644篇
  2009年   2823篇
  2008年   2390篇
  2007年   2786篇
  2006年   450篇
  2005年   525篇
  2004年   685篇
  2003年   702篇
  2002年   548篇
  2001年   329篇
  2000年   280篇
  1999年   275篇
  1998年   187篇
  1997年   167篇
  1996年   123篇
  1995年   131篇
  1994年   125篇
  1993年   119篇
  1992年   81篇
  1991年   53篇
  1990年   40篇
  1989年   40篇
  1988年   40篇
  1987年   22篇
  1986年   17篇
  1985年   10篇
  1984年   10篇
  1983年   7篇
  1982年   11篇
  1981年   28篇
  1980年   32篇
  1979年   4篇
  1976年   8篇
  1958年   4篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
101.
Magnetotelluric investigations have been carried out in the Garhwal Himalayan corridor to delineate the electrical structure of the crust along a profile extending from Indo-Gangetic Plain to Higher Himalayan region in Uttarakhand, India. The profile passing through major Himalayan thrusts: Himalayan Frontal Thrust (HFF), Main Boundary Thrust (MBT) and Main Central Thrust (MCT), is nearly perpendicular to the regional geological strike. Data processing and impedance analysis indicate that out of 44 stations MT data recorded, only 27 stations data show in general, the validity of 2D assumption. The average geoelectric strike, N70°W, was estimated for the profile using tensor decomposition. 2D smooth geoelectrical model has been presented, which provides the electrical image of the shallow and deeper crustal structure. The major features of the model are (i) a low resistivity (<50Ωm), shallow feature interpreted as sediments of Siwalik and Indo-Gangetic Plain, (ii) highly resistive (> 1000Ωm) zone below the sediments at a depth of 6 km, interpreted as the top surface of the Indian plate, (iii) a low resistivity (< 10Ωm) below the depth of 6 km near MCT zone coincides with the intense micro-seismic activity in the region. The zone is interpreted as the partial melting or fluid phase at mid crustal depth. Sensitivity test indicates that the major features of the geoelectrical model are relevant and desired by the MT data.  相似文献   
102.
A number of fine-grained sericite bearing pelitic, schistose lithologies occur along the Archean (Banded Gneiss Complex)-Proterozoic (Aravalli Supergroup) contact (APC) in the Udaipur valley in NW Indian craton. These Al-rich lithologies (subsequently metamorphosed) have been described as ‘paleosols’, developed over a 3.3 Ga old Archean gneissic basement and are overlain by Paleoproterozoic Aravalli quartzite. The paleosol was developed between 2.5 and 2.1, coincident with the globally recognized Great Oxidation Event (GOE). In previous studies these paleosol sections were interpreted to have developed under reducing environment, however, the finding of a ‘ferricrete’ zone in the upper part of Tulsi Namla section (east of Udaipur) during the present study (in addition to earlier reported lithologies) has led to an alternative suggestion of oxygen-rich conditions during paleosol development. The Tulsi Namla paleosol section shows all the features characteristic of a complete paleosol section described from other Archean cratons. The paleosol includes sericite schist with kyanite as the prevalent Al-silicate in the lower part of profile while chloritoid and Fe-oxides typify the Fe-rich upper part. Alumina has remained immobile during the weathering process while Fe and Mn show a decrease in the lower part of the section and an abrupt rise in the upper part, in the ferricrete zone. The field and geochemical data indicate that the Tulsi Namla section is an in situ weathering profile and at least the upper part shows evidence of oxidizing conditions.  相似文献   
103.
Spectral aerosol optical depth (AOD) measurements, carried out regularly from a network of observatories spread over the Indian mainland and adjoining islands in the Bay of Bengal and Arabian Sea, are used to examine the spatio-temporal and spectral variations during the period of ICARB (March to May 2006). The AODs and the derived Ångström parameters showed considerable variations across India during the above period. While at the southern peninsular stations the AODs decreased towards May after a peak in April, in the north Indian regions they increased continuously from March to May. The Ångström coefficients suggested enhanced coarse mode loading in the north Indian regions, compared to southern India. Nevertheless, as months progressed from March to May, the dominance of coarse mode aerosols increased in the columnar aerosol size spectrum over the entire Indian mainland, maintaining the regional distinctiveness. Compared to the above, the island stations showed considerably low AODs, so too the northeastern station Dibrugarh, indicating the prevalence of cleaner environment. Long-range transport of aerosols from tshe adjoining regions leads to remarkable changes in the magnitude of the AODs and their wavelength dependencies during March to May. HYSPLIT back-trajectory analysis shows that enhanced long-range transport of aerosols, particularly from the west Asia and northwest coastal India, contributed significantly to the enhancement of AOD and in the flattening of the spectra over entire regions; if it is the peninsular regions and the island Minicoy are more impacted in April, the north Indian regions including the Indo Gangetic Plain get affected the most during May, with the AODs soaring as high as 1.0 at 500 nm. Over the islands, the Ångström exponent (α) remained significantly lower (~1) over the Arabian Sea compared to Bay of Bengal (BoB) (~1.4) as revealed by the data respectively from Minicoy and Port Blair. Occurrences of higher values of α, showing dominance of accumulation mode aerosols, over BoB are associated well with the advection, above the boundary layer, of fine particles from the east Asian region during March and April. The change in the airmass to marine in May results in a rapid decrease in α over the BoB.  相似文献   
104.
Mass loading and chemical composition of atmospheric aerosols over the Arabian Sea during the pre-monsoon months of April and May have been studied as a part of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB). These investigations show large spatial variabilities in total aerosol mass loading as well as that of individual chemical species. The mass loading is found to vary between 3.5 and 69.2 μg m?3, with higher loadings near the eastern and northern parts of Arabian Sea, which decreases steadily to reach its minimum value in the mid Arabian Sea. The decrease in mass loading from the coast of India towards west is estimated to have a linear gradient of 1.53 μg m?3/° longitude and an e?1 scale distance of ~2300 km. SO 4 2? , Cl? and Na+ are found to be the major ionic species present. Apart from these, other dominating watersoluble components of aerosols are NO 3 ? (17%) and Ca2+ (6%). Over the marine environment of Arabian Sea, the non-sea-salt component dominates accounting to ~76% of the total aerosol mass. The spatial variations of the various ions are examined in the light of prevailing meteorological conditions and airmass back trajectories.  相似文献   
105.
Microzonation is an effort to evaluate and map potential hazards found in an area, urban area in particular, that could be induced by strong ground shaking during an earthquake. These hazards include: ground motion amplification, liquefaction, and slope failure. The microzonation maps, depicting ground-motion amplification, liquefaction, and landslide potentials, can be produced if the ground motion on bedrock (input) and the site conditions are known. These maps, in combination with ground-motion hazard maps (on bedrock), can be used to develop a variety of hazard mitigation strategies such as seismic risk assessment, emergency response and preparedness, and land-use planning. However, these maps have certain limitations that result from the nature of regional mapping, data limitations, generalization, and computer modeling. These microzonations show that when strong ground shaking occurs, damage is more likely to occur, or be more severe, in the higher hazard areas. The zones shown on the hazard maps should not serve as a substitute for site-specific evaluations.  相似文献   
106.
Estimation of the degree of local seismic wave amplification (site effects) requires precise information about the local site conditions. In many regions of the world, local geologic information is either sparse or is not readily available. Because of this, seismic hazard maps for countries such as Mozambique, Pakistan and Turkey are developed without consideration of site factors and, therefore, do not provide a complete assessment of future hazards. Where local geologic information is available, details on the traditional maps often lack the precision (better than 1:10,000 scale) or the level of information required for modern seismic microzonation requirements. We use high-resolution (1:50,000) satellite imagery and newly developed image analysis methods to begin addressing this problem. Our imagery, consisting of optical data and digital elevation models (DEMs), is recorded from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor system. We apply a semi-automated, object-oriented, multi-resolution feature segmentation method to identify and extract local terrain features. Then we classify the terrain types into mountain, piedmont and basin units using geomorphometry (topographic slope) as our parameter. Next, on the basis of the site classification schemes from the Wills and Silva (1998) study and the Wills et al (2000) and Wills and Clahan (2006) maps of California, we assign the local terrain units with V s 30 (the average seismic shear-wave velocity through the upper 30m of the subsurface) ranges for selected regions in Mozambique, Pakistan and Turkey. We find that the applicability of our site class assignments in each region is a good first-approximation for quantifying local site conditions and that additional work, such as the verification of the terrain’s compositional rigidity, is needed.  相似文献   
107.
The coal seams of Sawang Colliery, East Bokaro Coalfields are bituminous to sub-bituminous in nature and categorized as high gaseous seams (degree II to degree III level). These seams have the potential for coal bed methane (CBM) and their maturity increases with increasing depth, as a result of enhanced pressure-temperature conditions in the underground. The vitrinite maceral group composition of the investigated coal seams ranges from 62.50–83.15%, whereas the inertinite content varies from 14.93–36.81%. The liptinite content varies from 0.66% to 3.09%. The maximum micro-pores are confined within the vitrinite group of macerals. The coal seams exhibit vitrinite reflectance values (Ro% calculated) from 0.94% (sample CG-97) to 1.21% (sample CG-119). Proximate analyses of the investigated coal samples reveal that the moisture content (M%) ranges from 1.28% to 2.98%, whereas, volatile matter (VM%) content is placed in the range of 27.01% to 33.86%. The ash content (A%) ranges from 10.92% to 30.01%. Fixed carbon (FC%) content varies from 41.53% to 55.93%. Fuel ratio variation shows a restricted range from 1.53 to 1.97. All the coal samples were found to be strongly caking and forming coke buttons. The present study is based on the adsorption isotherm experiments carried out under controlled P-T conditions for determination of actual gas adsorption capacity of the coal seams. This analysis shows that the maximum methane gas adsorbed in the coal sample CG-81 is 17 m3/t (Std. daf), at maximum pressure of 5.92 MPa and experimental temperature of 30°C. The calculated Langmuir regression parameters PL and VL range from 2.49 to 3.75 MPa and 22.94 to 26.88 m3/t (Std. daf), respectively.  相似文献   
108.
Singh et al (2005) examined the potential of the ANN and neuro-fuzzy systems application for the prediction of dynamic constant of rockmass. However, the model proposed by them has some drawbacks according to fuzzy logic principles. This discussion will focus on the main fuzzy logic principles which authors and potential readers should take into consideration.  相似文献   
109.
This paper presents the development of spectral hazard maps for Sumatra and Java islands, Indonesia and microzonation study for Jakarta city. The purpose of this study is to propose a revision of the seismic hazard map in Indonesian Seismic Code SNI 03-1726-2002. Some improvements in seismic hazard analysis were implemented in the analysis by considering the recent seismic activities around Java and Sumatra. The seismic hazard analysis was carried out using 3-dimension (3-D) seismic source models (fault source model) using the latest research works regarding the tectonic setting of Sumatra and Java. Two hazard levels were analysed for representing 10% and 2% probability of exceedance (PE) in 50 years ground motions for Sumatra and Java. Peak ground acceleration contour maps for those two hazard levels and two additional macrozonation maps for 10% PE in 50 years were produced during this research. These two additional maps represent short period (0.2 s) and long-period (1.0 s) spectra values at the bedrock. Microzonation study is performed in order to obtain ground motion parameters such as acceleration, amplification factor and response spectra at the surface of Jakarta. The analyses were carried out using nonlinear approach. The results were used to develop contour of acceleration at the surface of Jakarta. Finally, the design response spectra for structural design purposes are proposed in this study.  相似文献   
110.
新疆阿尔泰蒙库铁矿床的成矿流体及成矿作用   总被引:30,自引:8,他引:22  
蒙库大型铁矿床赋存于上志留统—下泥盆统康布铁堡组变质火山-沉积岩系中,容矿岩石为石榴子石矽卡岩、变粒岩、浅粒岩和大理岩。矿体总体顺层分布,空间上与矽卡岩密切相关。研究表明,矽卡岩期石榴子石以发育玻璃质熔融包裹体、流体熔融包裹体和流体包裹体为特征,晚期矽卡岩阶段矿物中发育液相包裹体,变质期矿物中主要发育液相包裹体和含子矿物包裹体。矽卡岩期熔融包裹体的均一温度为1100℃,早期矽卡岩阶段流体包裹体均一温度变化于193~499℃,在450℃、350℃和230℃出现峰值。中期矽卡岩阶段均一温度变化于236~550℃,峰值为350℃。区域变质期均一温度介于132~513℃,在350℃、230℃和190℃出现峰值。流体包裹体的盐度w(NaCleq)介于1.23%~60.31%,流体密度变化于0.60~1.16g/cm3。石榴子石、石英和方解石的δ18OSMOW变化于0.2‰~8.4‰,δ18OH2O介于-5.1‰~5.33‰,δD为-127‰~-81‰,表明矽卡岩期成矿流体主要是岩浆水,混合少量大气降水;变质期流体主要为大气降水,为混合变质水。方解石δ13CPDB变化于-6.1‰~-2.3‰,表明流体中碳来自深部或地幔。成矿时代为早泥盆世早期(略晚于404~400Ma),成矿作用与矽卡岩的退化变质作用有关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号