首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   21篇
  国内免费   1篇
测绘学   2篇
大气科学   12篇
地球物理   98篇
地质学   94篇
海洋学   34篇
天文学   62篇
综合类   1篇
自然地理   23篇
  2024年   1篇
  2022年   3篇
  2021年   10篇
  2020年   12篇
  2019年   9篇
  2018年   16篇
  2017年   14篇
  2016年   21篇
  2015年   15篇
  2014年   13篇
  2013年   21篇
  2012年   9篇
  2011年   25篇
  2010年   18篇
  2009年   25篇
  2008年   17篇
  2007年   17篇
  2006年   13篇
  2005年   7篇
  2004年   13篇
  2003年   16篇
  2002年   7篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1983年   1篇
  1976年   1篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有326条查询结果,搜索用时 656 毫秒
261.
In this paper a composite analysis was used to assess the influence of the North Atlantic Oscillation (NAO) on the winter daily rainfall and seasonal runoff at 28 stations of the Abruzzo region (Central Italy) during the period 1951–2012. Compositing was based on NAO? and NAO+ phases, identified by mean winter values of the normalized NAO index (NAOI) ≤?0.75 and ≥+0.75, respectively. In accordance with previous studies, it was found that NAO? phases determine, in general, a greater number of wet days (N w ) and (consequently) higher seasonal rainfall amounts in comparison to NAO+ phases. However, the NAO influence is characterized by a certain spatial variability, that can mostly be explained by orographic effects due to the Apennine Mountains. This is particularly evident for the mean rainfall depth per event (P e ) that, during NAO? phases, increases for the stations to the west of the Apennines, while it decreases for most of the stations to the east. The structure of winter daily rainfall of NAO+ and NAO? type, was described by a simple but effective first-order Markov process, determining the transition probabilities P01 (dry to wet) and P10 (wet to dry) and modelling the rainfall depth on wet days by a Weibull distribution. The most significant influence of NAO concerns P01 and the shape parameter of the Weibull distribution that are both higher during the NAO? phase. This means that NAO? phases are characterized by less persistent dry periods and less variable daily rainfall depths, in comparison to NAO+ phases. The effect of these differences on the winter seasonal runoff was explored by applying a Curve Number rainfall-runoff model. Significant increments of the mean seasonal runoff during NAO? phases were observed only for few stations (mainly on the west), characterized by corresponding increments of N w , P tot and P e .). NAO+ phases, instead, are characterized by relevant increments of the seasonal runoff variability, particularly on the eastern areas. In this context, the important regulating function of the watershed conditions was also discussed.  相似文献   
262.
New detailed data about the morphology of the submerged slopes of Lake Albano (Rome, Italy) have been collected by a sonar multibeam survey financed by the Italian Department of Civil Protection. These data allow for investigation of the subaqueous slope dynamics of the lake, which partially fills a volcanic depression, and the elucidation of the relationships between subaqueous and subaerial slope processes. Subaerial, submerged and combined subaerial/submerged landslide‐related morphologies were detected around the inner slopes of the lake. In the submerged slopes, several gravity‐induced landforms were recognized: landslide scar areas, landslide accumulations, erosional chutes and channels, block fields, isolated blocks, scarps and slope breaks. An attempt to evaluate the state of activity of the submerged slopes was carried out by taking into consideration the relative freshness of some selected landforms. Interpretation of bathymetric data, as well as direct surveys of the subaerial slopes, was used to assess the morphometric features and interpret the type of movement of the landslides. We propose a comprehensive classification based on the landslide's size and type of movement. We recognized rock fall/topples, debris flows, rock slides and slump, complex rock slides/channelled flows and debris slide and slump. The volume of the main landslides ranged between 101 and 103 m3, while a few rock and debris slides have volumes ranging between 103 and 105 m3. Two large palaeo‐landslides with volumes on the order of 106 m3 were identified in the southern and northern part of the lake, respectively. Velocities of the recognized landslides range from rapid to extremely rapid. Two main landslide hazard scenarios have been depicted from the results of the integrated analysis of both subaerial and submerged gravity‐induced landforms. The most hazardous scenario involves extremely rapid large volume events (>106 m3) that could, if they interacted with water, induce catastrophic tsunamis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
263.
The evaluation of the kinematic setting and the structural control of volcanic arcs are important in defining the tectono-magmatic processes along convergent plate boundaries. However, our knowledge is fragmented and the available data highlight different behaviours. This study analyzes the kinematic setting, the structural control and the volcanic productivity of 16 arcs. These arcs are characterized by predominant extensional, compressional, strike–slip or oblique motions. There is an overall coupling between the normal vs. parallel motions along the arc and those of the underlying slab. Therefore, the higher the trench-normal (or parallel) component of the subduction rate, the higher is the amount of arc-normal (or parallel) motion. This relation confirms that strain partitioning is, in general, feasible at many convergent settings, involving also the volcanic arc portion. The arc-normal motion may be characterized by extension or compression, as a function of the increase in the trench-normal convergence (or subduction) velocity. The lack of an evident relation between the subduction rate (or convergence rate) and the volcanic productivity of the arc is partly inconsistent with previous studies, which highlight a relation between the subduction rate and melt production below arcs. This discrepancy mainly suggests that different processes control the generation, rise and eruption of magma at different depths, varying the intrusive/extrusive ratio along arcs. The structure of the arc does not control the distribution of the volcanoes; however, it does control the volcanic output through different processes, even though regional or local extension (associated with strike–slip or compressive structures) is the ultimate requisite, in any setting. In general, the higher the amount of extension, the higher is the output rate along the arc.  相似文献   
264.
This paper presents a static equivalent approach to estimate the maximum kinematic interaction effects on piles subjected to lateral seismic excitation. Closed-form expressions are reported for the evaluation of the maximum free-field soil movements and for the computation of maximum pile shear force and bending moments. Firstly, modal analysis, combined with a suitable damped response spectrum, is used to evaluate the maximum free-field response. Secondly, the pile is schematised as a Winkler's beam subjected to equivalent static forces defined according to soil vibration modal shapes and amplitude. The method may be applied by using response spectra suggested by National Standards or those obtained with accelerograms. The procedure proposed may be conveniently implemented in simple spreadsheets or in commercial finite element programs and easily used by practicing engineers. Method accuracy is demonstrated by comparing the results with those obtained with a more rigorous model. Good results may be achieved by considering only the first soil vibration mode making the procedure straightforward for practical design purposes.  相似文献   
265.
Mineralogy and Petrology - Geochemistry and Sr-Nd isotopes were determined in Triassic calcalkaline metalava and metapyroclastic rocks from Attica and Argolida, central Greece, to ascertain their...  相似文献   
266.
Mineralogy and Petrology - The Ghorveh-Seranjic (GS) skarn is located in the northern part of the Sanandaj-Sirjan zone, NW Iran, which is part of Alpine-Himalaya orogenic belt. The GS metamorphic...  相似文献   
267.
268.
Scientific research proposing any type of device/technique for seismic protection of buildings is generally based on numerical models that adopt simplifications to make possible extensive analyses. This means that important details of the inelastic response could be neglected. Following this consideration, regardless of the device/technique invented, before it could be put into practice, an experimental verification of the actual structural performance should be conducted by full-scale tests at building level. This issue is investigated in the paper considering seismic retrofit of reinforced concrete (RC) framed structures by buckling-restrained braces (BRBs) as technique to be validated, while hybrid test is selected as tool for experimental validation at building level. The analysed seismic upgrading technique consists in the insertion of BRBs into the RC frame. The upgrading intervention is designed by a method developed in previous studies. This technique responds to an important need of the society. Indeed, existing RC frames showed high vulnerability in occurrence of past earthquakes when they were not originally conceived to sustain horizontal forces. The hybrid test is selected among the available experimental techniques because it allows the experimentation on full-scale specimens with reasonable cost. In this study, a substructure hybrid test was conducted and the results are here presented to (a) evaluate the effectiveness of the design method of BRBs for seismic upgrading, (b) investigate the integration of BRBs in existing RC frame, and (c) show the potentiality of the substructure hybrid test for the experimental verification of innovative techniques for seismic protection of buildings.  相似文献   
269.
A sustained increase in spring discharges was monitored after the 2016 Central Italy seismic sequence in the fractured carbonate aquifer of Valnerina–Sibillini Mts. The groundwater surplus recorded between August 2016 and November 2017 was determined to be between 400 and 500 × 106 m3. In fractured aquifers, the post-seismic rise in spring discharges is generally attributed to an increase in bulk permeability caused by the fracture cleaning effect, which is induced by pore pressure propagation. In the studied aquifers, the large amount of additional discharge cannot only be attributed to the enhanced permeability, which was evaluated to be less than 20% after each main seismic event. A detailed analysis of the spring discharge hydrographs and of the water level at five gauging stations was carried out to determine the possible causes of this sudden increase in groundwater outflow. Taking into account the geological and structural framework, a conceptual model of a basin-in-series has been adopted to describe the complex hydrogeological setting, where the thrusts and extensional faults have clearly influenced the groundwater flow directions before and after the seismic sequence. The prevalent portion of the total post-seismic discharge surplus not explained by the increase in permeability has been attributed to changes in the hydraulic gradient that caused seismogenic fault rupture and the disruption in the upgradient sector of the aquifer. The additional flow calculated through the breach of the pre-existing hydrostructural barrier corresponds to approximately 470 × 106 m3. This value is consistent with the total discharge increase measured in the whole study area, validating the proposed conceptual model. Consequently, a shift in the piezometric divide of the hydrogeological system has been induced, causing a potentially permanent change that lowers the discharge amount of the eastern springs.  相似文献   
270.
Experimental tests have shown that unreinforced masonry (URM) infill walls are affected by simultaneous loading in their in-plane and out-of-plane directions, but there have been few attempts to represent this interaction in nonlinear time history analysis of reinforced concrete (RC) buildings with URM infill walls. In this paper, a recently proposed macro-model that accounts for this interaction is applied to the seismic analysis of RC framed structures with URM infill walls representative of Mediterranean building stock and practices. Two RC framed structures that are representative of low and mid-rise residential buildings are analysed with a suite of a bidirectional ground motions, scaled to three different intensities. During the analyses, the in-plane/out-of-plane interaction is monitored, showing that cracking of the infills occurs predominantly by in-plane actions, while failure occurs due to a combination of in-plane and out-of-plane displacements, with the out-of-plane component usually playing the dominant role. Along the frame height, the bottom storeys are generally the most damaged, especially where thin infill walls are used. These results are consistent with observations of damage to URM infill walls in similar buildings during recent earthquakes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号