首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地球物理   3篇
地质学   2篇
海洋学   7篇
天文学   1篇
自然地理   1篇
  2021年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
排序方式: 共有14条查询结果,搜索用时 0 毫秒
11.
In order to evaluate the environmental impact associated with sequestration of carbon dioxide in the deep sea, a free fall type field experimental device, the benthic chamber, was developed. In situ experiments to expose deep-sea communities to elevated concentrations of carbon dioxide (average of 20,000 ppm, 5,000 ppm and control) were carried out using this device 3 times, viz., in the winter of 2002 and in the spring and the summer of 2003, in the Kumano Trough at a depth of 2,000 m. In the long-term experiments (about two weeks in winter of 2002 and summer of 2003), the abundance of meiobenthos declined whereas that of bacteria increased under the condition of 20,000 ppm carbon dioxide compared with the control. Among meiofauna, the abundance of foraminifers at the same concentration of carbon dioxide became less than the control even in the short-term (3 days in spring of 2003) experiment, suggesting that organisms with a calcium carbonate exoskeleton are more sensitive to the raised concentration of carbon dioxide. The respiration rate of the benthic community exposed to 20,000 ppm was lower in the early stage of the experiment than in the latter half, whereas it was opposite under the condition of 5,000 ppm. The increase of biological activity in the 20,000 ppm exposure group is probably due to an increase of bacteria adapted to high carbon dioxide concentrations. The present results suggest that the influence of carbon dioxide on the deep-sea benthic ecosystem does not follow a simple, linear relationship with concentration.  相似文献   
12.
13.
Size and taxonomic structure of plankton community carbon biomass for the 0.2–2000 μm equivalent spherical diameter range were determined at the equator at 175°E in September 1990–1993 and April 1994. Total biomass of the plankton community ranged from 1944 to 3448 mg C m−2. Phytoplankton, zooplankton and bacteria carbon biomasses were 604–1669 mg C m-2, 300–797 mg C m2, and 968–1200 mg C m-2, and the percentages were 31–54%, 15–26%, and 29–54%, respectively. Biomass of heterotrophic bacteria was always the largest fraction andProchlorococcus biomass was second. Heterotrophic and autotrophic flagellates and dinoflagellates in the nanoplankton size range and copepods (adults and copepodites) in the mesoplankton range were also high. Relatively small biomass was observed in the microplankton size range. The differences in integrated biomass of plankton community for El Nin˜o type oligotrophic conditions of September 1990–1993 and non-El Nifio type mesotrophic conditions of April 1994 were generally small compared with the interannual difference during 1990–1993. However, the percentage ofProchlorococcus in phytoplankton carbon biomass was larger in non-El Nin˜o year. Biomasses of cyanobacteria, diatom, dinoflagellates, nauplii of copepods, and crustaceans other than copepods were larger in the non-El Nin˜o year. Primary production increased significantly from El Nin˜o to non-El Nin˜o years. Carbon flow through the plankton food chain was estimated using the plankton carbon biomass data, primary production measurements, and published empirical relationships.  相似文献   
14.
Tsunami deposits in Kyushu Island, Southwestern Japan, have been attributed to the 7.3 ka Kikai caldera eruption, but their origin has not been confirmed. We analyzed an 83-cm-thick Holocene event deposit in the SKM core, obtained from incised valley fill in the coastal lowlands near Sukumo Bay, Southwestern Shikoku Island. We confirmed that the event deposit contains K-Ah volcanic ash from the 7.3 ka eruption. The base of the event deposit erodes the underlying inner-bay mud, and the deposit contains material from outside the local terrestrial and marine environment, including angular quartz porphyry from a small inland exposure, oyster shell debris, and a coral fragment. Benthic foraminifers and ostracods in the deposit indicate various habitats, some of which are outside Sukumo Bay. The sand matrix contains low-silica volcanic glass from the late stage of the Kikai caldera eruption. We also documented the same glass in an event deposit in the MIK1 core, from the incised Oyodo River valley in the Miyazaki Plain on Southeastern Kyushu. These two 7.3 ka tsunami deposits join other documented examples that are widely distributed in Southwestern Japan including the Bungo Channel and Beppu Bay in Eastern Kyushu, Tachibana Bay in Western Kyushu, and Zasa Pond on the Kii Peninsula as well as around the caldera itself. The tsunami deposits near the caldera have been divided into older and younger 7.3 ka tsunami deposits, the younger ones matching the set of widespread deposits. We attribute the younger 7.3 ka tsunami deposits to a large tsunami generated by a great interplate earthquake in the Northern part of the Ryukyu Trench and (or) the Western Nankai Trough just after the late stage of the Kikai caldera eruption and the older 7.3 ka tsunami deposits to a small tsunami generated by an interplate earthquake or Kikai caldera eruption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号