首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   659篇
  免费   21篇
  国内免费   5篇
测绘学   9篇
大气科学   139篇
地球物理   147篇
地质学   185篇
海洋学   56篇
天文学   94篇
综合类   32篇
自然地理   23篇
  2024年   2篇
  2023年   3篇
  2022年   8篇
  2021年   11篇
  2020年   14篇
  2019年   9篇
  2018年   12篇
  2017年   18篇
  2016年   26篇
  2015年   23篇
  2014年   30篇
  2013年   37篇
  2012年   25篇
  2011年   234篇
  2010年   26篇
  2009年   19篇
  2008年   27篇
  2007年   11篇
  2006年   19篇
  2005年   18篇
  2004年   9篇
  2003年   8篇
  2002年   8篇
  2001年   3篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1997年   14篇
  1996年   5篇
  1995年   9篇
  1994年   2篇
  1993年   4篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   1篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有685条查询结果,搜索用时 140 毫秒
71.
To investigate how velocity variances and spectra are modified by the simultaneous action of topography and canopy, two flume experiments were carried out on a train of gentle cosine hills differing in surface cover. The first experiment was conducted above a bare surface while the second experiment was conducted within and above a densely arrayed rod canopy. The velocity variances and spectra from these two experiments were compared in the middle, inner, and near-surface layers. In the middle layer, and for the canopy surface, longitudinal and vertical velocity variances () were in phase with the hill-induced spatial mean velocity perturbation (Δu) around the so-called background state (taken here as the longitudinal mean at a given height) as predicted by rapid distortion theory (RDT). However, for the bare surface case, and remained out of phase with Δu by about L/2, where L is the hill half-length. In the canopy layer, wake production was a significant source of turbulent energy for , and its action was to re-align velocity variances with Δu in those layers, a mechanism completely absent for the bare surface case. Such a lower ‘boundary condition’ resulted in longitudinal variations of to be nearly in phase with Δu above the canopy surface. In the inner and middle layers, the spectral distortions by the hill remained significant for the background state of the bare surface case but not for the canopy surface case. In particular, in the inner and middle layers of the bare surface case, the effective exponents derived from the locally measured power spectra diverged from their expected  − 5/3 value for inertial subrange scales. These departures spatially correlated with the hill surface. However, for the canopy surface case, the spectral exponents were near  − 5/3 above the canopy though the minor differences from  − 5/3 were also correlated with the hill surface. Inside the canopy, wake production and energy short-circuiting resulted in significant departures from  − 5/3. These departures from  − 5/3 also appeared correlated with the hill surface through the wake production contribution and its alignment with Δu. Moreover, scales commensurate with Von Karman street vorticies well described wake production scales inside the canopy, confirming the important role of the mean flow in producing wakes. The spectra inside the canopy on the lee side of the hill, where a negative mean flow delineated a recirculation zone, suggested that the wake production scales there were ‘broader’ when compared to their counterpart outside the recirculation zone. Inside the recirculation zone, there was significantly more energy at higher frequencies when compared to regions outside the recirculation zone.  相似文献   
72.
The future Square Kilometre Array (SKA) radio telescope is an interferometer array that will use a variety of collector types, including approximately 2500 dishes distributed with separations up to a few thousand kilometres, and about 250 aperture array (AA) stations located within 200 km of the core. The data rates associated with each individual collector are vast: around 10 GBytes/s for each dish and 2 TBytes/s for an AA station. As each of these must be connected directly to a central correlator, designing a cost-effective cabling and trenching infrastructure presents a great engineering challenge. In this paper we discuss approaches to performing this optimisation. In graph theory, the concept of a minimum spanning tree (MST) is equivalent to finding the minimum total trench length joining a set of n arbitrary points in the plane. We have developed a set of algorithms which optimise the infrastructure of any given telescope layout iteratively, taking into consideration not only trenching but also cabling and jointing costs as well. Solutions for few example configurations of telescope layout are presented. We have found that these solutions depend significantly on the collectors’ output data rates. When compared to a “traditional” MST-based approach which minimises trenching costs only, our algorithms can further reduce total costs by up to 15–20%. This can influence greatly the SKA infrastructure related costs.  相似文献   
73.
A practical and important problem encountered during the atmospheric re-entry phase is to determine analytical solutions for the space vehicle dynamical equations of motion. The author proposes new solutions for the equations of trajectory and flight-path angle of the space vehicle during the re-entry phase in Earth’s atmosphere. Explicit analytical solutions for the aerodynamic equations of motion can be effectively applied to investigate and control the rocket flight characteristics. Setting the initial conditions for the speed, re-entering flight-path angle, altitude, atmosphere density, lift and drag coefficients, the nonlinear differential equations of motion are linearized by a proper choice of the re-entry range angles. After integration, the solutions are expressed with the Exponential Integral, and Generalized Exponential Integral functions. Theoretical frameworks for proposed solutions as well as, several numerical examples, are presented.  相似文献   
74.
Forested peatlands are widespread in boreal regions of Canada, and these ecosystems, which are major terrestrial carbon sinks, are undergoing significant transformations linked to climate change, fires and human activities. This study targets millennial‐scale vegetation dynamics and related hydrological variability in forested peatlands of the Clay Belt south of James Bay, eastern Canada, using palaeoecological data. Changes in peatland vegetation communities were reconstructed using plant macrofossil analyses, and variations in water‐table depths were inferred using testate amoeba analyses. High‐resolution analyses of macroscopic charcoal >0.5 mm were used to reconstruct local fire history. Our data showed two successional pathways towards the development of present‐day forested peatlands influenced by autogenic processes such as vertical peat growth and related drying, and allogenic factors such as the occurrence of local fires. The oldest documented peatland initiated in a wet rich fen around 8000 cal. a BP shortly after land emergence and transformed into a drier forested bog rapidly after peat inception that persisted over millennia. In the second site, peat started to accumulate from ~5200 cal. a BP over a mesic coniferous forest that shifted into a wet forested peatland following a fire that partially consumed the organic layer ~4600 cal. a BP. The charcoal records show that fires rarely occurred in these peatlands, but they have favoured the process of forest paludification and influenced successional trajectories over millennia. The macrofossil data suggest that Picea mariana (black spruce) persisted on the peatlands throughout their development, although there were periods of more open canopy due to local fires in some cases. This study brings new understanding on the natural variability of boreal forested peatlands which may help predict their response to future changes in climate, fire regimes and anthropogenic disturbances.  相似文献   
75.
Atmospheric surface layer (ASL) experiments over the past 10 years demonstrate that the flux-variance similarity functions for water vapour are consistently larger in magnitude than their temperature counterpart. In addition, latent heat flux calculations using the flux-variance method do not compare as favorably to eddy- correlation measurements when compared to their sensible heat counterpart. These two findings, in concert with measured heat to water vapour transport efficiencies in excess of unity, are commonly used as evidence of dissimilarity between heat and water vapour transport in the unstable atmospheric surface layer. In this note, it is demonstrated that even if near equality in flux-profile similarity functions for heat and water vapour is satisfied, the flux-variance similarity functions for water vapour are larger in magnitude than temperature for a planar, homogeneous, unstably-stratified turbulent boundary-layer flow.  相似文献   
76.
77.
Temperature and moisture content in the variably saturated subsurface are two of the most important physical parameters that govern a wide variety of geochemical and ecological processes. An understanding of thermal and hydraulic processes and properties of transient vadose zones is therefore fundamental in the evaluation of such processes. Here, an investigation of the thermal regime and subsurface properties of a tidally affected, variably saturated streambed is presented. Field and laboratory measurements, as well as a forward numerical model, are jointly employed in the investigation. Temperature, soil moisture, surface level, and water level data were recorded in a transect perpendicular to a tidally driven stream. Frequency‐domain analysis of the subsurface temperature measurements revealed the rapid decay of the tidal temperature driver within the top ~30 cm of sediment. Several techniques were used to evaluate subsurface thermal and hydraulic properties, including thermal conductivity and the soil water retention curve. These properties were used to constrain a forward numerical model that included coupled treatment of relevant variable saturation thermal and hydraulic physics. Even though the investigated vadose zone is intermittent and relatively shallow ( 20 cm), the results illustrate how error can be introduced into heat‐transport calculations if unsaturated conditions are not taken into account.  相似文献   
78.
Analytical protocols for SHRIMP‐SI oxygen isotope analysis (δ18O) of a suite of zircon reference materials (RMs) are presented. Data reduction involved a robust estimate of uncertainties associated with the individual spot as well as for groups where the spot data are combined. The repeatability of δ18O measurements is dependent on both the analytical conditions and the choice of the primary reference material. Under optimised conditions, repeatability was often better than 0.4‰ (2s) allowing sample uncertainties to be obtained to better than 0.2‰ (at 95% confidence limit). Single spot uncertainty combined the within‐spot precision with the scatter associated with repeated measurements of the primary zircon reference material during a measurement session. The uncertainty for individual spots measured under optimised conditions was between 0.3 and 0.4‰ (at 95% confidence). The analytical protocols described were used to assess a variety of zircon RMs that have been used for geochronology and for which laser fluorination oxygen isotope data are available (Temora 2, FC1, R33, QGNG and Ple?ovice), as well as zircons that have been used as RMs for trace element or other types of determination (Mud Tank, Monastery, 91500, AS57, AS3, KIM‐5, OG1, SL13, CZ3 and several other Sri Lankan zircons). Repeated analyses over nine sessions and seven different mounts show agreement within analytical uncertainty for Temora 2, FC1, R33, QGNG, Ple?ovice and 91500, when normalised to Mud Tank. For existing ion microprobe mounts with these materials, an appropriate δ18O can be determined. However, care should be taken when using zircons from the Duluth Complex (i.e., FC1, AS57 and AS3) as reference materials as our data indicated an excess scatter on δ18O values associated with low‐U zircon grains.  相似文献   
79.
In the last 15 years, more than 2700 meteorites have been recovered and officially classified from the Atacama Desert. Although the number of meteorites collected in the Atacama has risen, the physical and climatic properties of the dense collection areas (DCAs) have not been fully characterized. In this article, we compiled the published data of all classified meteorites found in the Atacama Desert to (i) describe the distribution by meteorite groups, (ii) compare the weathering degree of chondrites among different Atacama DCAs and other hot and cold deserts, and (iii) determine the preservation conditions of chondrites in the main Atacama DCAs in relation with the local climatic conditions. The 35 DCAs so far identified in the Atacama Desert are located in three main morphotectonic units: The Coastal Range (CR), Central Depression (CD), and Pre-Andean Range/Basement. A comparison with reported weathering data from other cold and hot deserts indicates that the mean terrestrial weathering of Atacama chondrites (W1–2), displays less alteration than other hot deserts (W2–3) and resembles the weathering distribution of the Antarctic meteorites (W1–2). The highest abundance of Atacama chondrites with low weathering (≤W2) is localized in the CD (78.8%, N = 1435), which is protected from the coastal fog influence and seasonal rainfalls and displays the oldest surfaces in the Atacama Desert. The morphogenetic classification based on present-day temperatures and precipitations of the main Atacama DCAs reveals similar regional/subregional climatic conditions in the most productive areas and a truly productive surface for meteorite recovery between 5% and 58% of the quadrangles formally defined for each Atacama DCA. Our morphogenetic classification lacks consideration of some meteorological parameters such as the coastal fog, so it cannot fully explain the differences in weathering patterns among CR chondrites. Future studies of chondrite preservation in the Atacama DCAs should consider other meteorological variables such as relative humidity, specific humidity, or dew point, in combination with exposure ages of meteorites and its surfaces.  相似文献   
80.
Sedimentary units generally present anisotropy in their hydraulic properties, with higher hydraulic conductivity along bedding planes, rather than perpendicular to them. This common property leads to a modeling challenge if the sedimentary structure is folded. In this paper, we show that the gradient of the geological potential used by implicit geological modeling techniques can be used to compute full hydraulic conductivity tensors varying in space according to the geological orientation. For that purpose, the gradient of the potential, a vector normal to the bedding, is used to construct a rotation matrix that allows the estimation of the 3D hydraulic conductivity tensor in a single matrix operation. A synthetic 2D cross section example is used to illustrate the method and show that flow simulations performed in such a folded environment are highly influenced by this rotating anisotropy. When using the proposed method, the streamlines follow very closely the folded formation. This is not the case with an isotropic model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号