首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   389篇
  免费   12篇
  国内免费   5篇
测绘学   11篇
大气科学   24篇
地球物理   83篇
地质学   201篇
海洋学   24篇
天文学   25篇
综合类   4篇
自然地理   34篇
  2022年   3篇
  2020年   5篇
  2019年   5篇
  2018年   9篇
  2017年   8篇
  2016年   14篇
  2015年   6篇
  2014年   13篇
  2013年   20篇
  2012年   17篇
  2011年   18篇
  2010年   19篇
  2009年   35篇
  2008年   18篇
  2007年   15篇
  2006年   16篇
  2005年   16篇
  2004年   8篇
  2003年   8篇
  2002年   8篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1993年   4篇
  1992年   4篇
  1989年   3篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1982年   4篇
  1979年   3篇
  1975年   3篇
  1971年   4篇
  1970年   3篇
  1969年   3篇
  1967年   3篇
  1966年   3篇
  1962年   3篇
  1959年   3篇
  1954年   3篇
  1953年   2篇
  1952年   2篇
  1939年   2篇
  1938年   3篇
  1937年   2篇
  1936年   2篇
排序方式: 共有406条查询结果,搜索用时 15 毫秒
171.
This paper presents results of recent measurements of sand transport made in Chioggia inlet as part of an extensive monitoring programme in the Venetian inlets. Measurements were made in order: (1) to define a relationship between sand transport magnitude and tidal flow; (2) to derive the thresholds for sand transport; (3) to identify the dominant modes of transport; (4) to evaluate the concentration profiles of sand within the benthic boundary layer; (5) to compare bedload transport observations with model predictions using existent bedload formulae; and (6) to produce yearly estimates of bedload transport across the inlet. The vertical distribution of sand in the water column was sampled using modified Helley–Smith bedload samplers at three sites. Transport was found to vary according to the flow and bed grain size, with considerable temporal and spatial variability. A difference of up to three orders of magnitude in transport was observed through the inlet, with higher transport rates measured on the seaward part. The dominant mode of transport in the central inlet was suspension, while bedload was dominant in the mouths. The measured profiles of sand concentration varied with the tidal stage and seabed grain size according to the Rouse parameter (R). R was high at the inlet mouths (1<R<2), indicative of a well-developed bedload layer. The inverse movability number (Ws/U*) was also higher at these sites and appeared to be grain size dependant. Formulae for bedload transport were tested against field data; stochastic methods such as Einstein–Brown, Engelund–Hansen and Van Rijn produce the best fits. The coupled model SHYFEM-Sedtrans05 appears to simulate well observed transport for most conditions of flow. Long-term bedload predictions indicate a dominant export of sand, with a yearly average of 4500 m3.  相似文献   
172.
We analyzed seasonal and annual variations of the whole layer atmospheric moisture budget and precipitation during 1961–2005 and their associations with large-scale circulation in the Yangtze River basin, China. The results indicated increasing moisture budget in summer and winter, but decreasing moisture budget in spring and autumn. Positive correlations between moisture budget and precipitation illustrate tremendous impacts the moisture budget has on the precipitation changes across the Yangtze River basin. In terms of seasonal variations, significant correlations were observed between precipitation and moisture budget in spring and autumn in the upper Yangtze River basin. Besides, we also analyzed changes of geopotential height. The positive trends of the geopotential height (850 hPa) were observed in the East Asia and the negative trends in the middle and west Pacific Ocean, indicating increasing geopotential height from south to north in east Asia which largely limited the moisture propagation to north China. While decreasing meridional geopotential height from west to east along the Yangtze River basin caused more moisture propagation from the west to the east parts of the study region, which may benefit more precipitation in the middle and lower Yangtze River basin.  相似文献   
173.
Quantification of mass and heat transport in fractured porous rocks is important to areas such as contaminant transport, storage and release in fractured rock aquifers, the migration and sorption of radioactive nuclides from waste depositories, and the characterization of engineered heat exchangers in the context of enhanced geothermal systems. The large difference between flow and transport characteristics in fractures and in the surrounding matrix rock means models of such systems are forced to make a number of simplifications. Analytical approaches assume a homogeneous system, numerical approaches address the scale at which a process is operating, but may lose individual important processes due to averaging considerations. Numerical stability criteria limit the contrasts possible in defining material properties. Here, a hybrid analytical–numerical method for transport modeling in fractured media is presented. This method combines a numerical model for flow and transport in a heterogeneous fracture and an analytical solution for matrix diffusion. By linking the two types of model, the advantages of both methods can be combined. The methodology as well as the mathematical background are developed, verified for simple geometries, and applied to fractures representing experimental field conditions in the Grimsel rock laboratory.  相似文献   
174.
Organic matter (OM) in mineral-organic associations (MOAs) represents a large fraction of carbon in terrestrial ecosystems which is considered stable against biodegradation. To assess the role of MOAs in carbon cycling, there is a need to better understand (i) the time-dependent biogeochemical evolution of MOAs in soil, (ii) the effect of the mineral composition on the physico-chemical properties of attached OM, and (iii) the resulting consequences for the stabilization of OM. We studied the development of MOAs across a mineralogical soil gradient (0.3-4100 kyr) at the Hawaiian Islands that derived from basaltic tephra under comparable climatic and hydrological regimes. Mineral-organic associations were characterized using biomarker analyses of OM with chemolytic methods (lignin phenols, non-cellulosic carbohydrates) and wet chemical extractions, surface area/porosity measurements (N2 at 77 K and CO2 at 273 K), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The results show that in the initial weathering stage (0.3 kyr), MOAs are mainly composed of primary, low-surface area minerals (olivine, pyroxene, feldspar) with small amounts of attached OM and lignin phenols but a large contribution of microbial-derived carbohydrates. As high-surface area, poorly crystalline (PC) minerals increase in abundance during the second weathering stage (20-400 kyr), the content of mineral-associated OM increased sharply, up to 290 mg C/g MOA, with lignin phenols being favored over carbohydrates in the association with minerals. In the third and final weathering stage (1400-4100 kyr), metastable PC phases transformed into well crystalline secondary Fe and Al (hydr)oxides and kaolin minerals that were associated with less OM overall, and depleted in both lignin and carbohydrate as a fraction of total OM. XPS, the N2 pore volume data and OM-mineral volumetric ratios suggest that, in contrast to the endmember sites where OM accumulated at the surfaces of larger mineral grains, topsoil MOAs of the 20-400-kyr sites are composed of a homogeneous admixture of small-sized PC minerals and OM, which originated from both adsorption and precipitation processes. The chemical composition of OM in surface-horizon MOAs, however, was largely controlled by the uniform source vegetation irrespective of the substrate age whereas in subsoil horizons, aromatic and carboxylic C correlated positively with oxalate-extractable Al and Si and CuCl2-extractable Al concentrations representing PC aluminosilicates and Al-organic complexes (r2 > 0.85). Additionally, XPS depth profiles suggest a zonal structure of sorbed OM with aromatic carbons being enriched in the proximity of mineral surfaces and amide carbons (peptides/proteins) being located in outer regions of MOAs. Albeit the mineralogical and compositional changes of OM, the rigidity of mineral-associated OM as analyzed by DSC changed little over time. A significantly reduced side chain mobility of sorbed OM was, however, observed in subsoil MOAs, which likely arose from stronger mineral-organic bindings. In conclusion, our study shows that the properties of soil MOAs change substantially over time with different mineral assemblages favoring the association of different types of OM, which is further accentuated by a vertical gradient of OM composition on mineral surfaces. Factors supporting the stabilization of sorbed OM were (i) the surface area and reactivity of minerals (primary or secondary crystalline minerals versus PC secondary minerals), (ii) the association of OM with micropores of PC minerals (via ‘sterically’ enhanced adsorption), (iii) the effective embedding of OM in ‘well mixed’ arrays with PC minerals and monomeric/polymeric metal species, (iv) the inherent stability of acidic aromatic OM components, and (iv) an impaired segmental mobility of sorbed OM, which might increase its stability against desorption and microbial utilization.  相似文献   
175.
176.
177.
178.
Climate Dynamics - We propose a conceptual model which generates abrupt climate changes akin to Dansgaard–Oeschger events. In the model these abrupt climate changes are not triggered by...  相似文献   
179.
Houben GJ 《Ground water》2004,42(1):78-82
Ferric iron encrustations are a common problem that seriously affects the performance of wells and drains. Their formation is induced by the mixing of reduced ground water containing ferrous iron with oxic shallow ground water and exposure to air. The process of ferrous iron oxidation is a kinetically controlled reaction. The reaction rate has a quadratic dependency on pH. The precipitating oxides have an autocatalytic effect that further enhances reaction progress. This paper describes the application of kinetic models to the problem of encrustation formation. Influences of pH, residence time, and autocatalysis were modeled. The overall influence of the autocatalytic reaction path is particularly strong when initial amounts of iron oxides are present. Autocatalysis provides a good explanation on the development of well yield commonly measured in the field. Encrustation precipitation is slow at first, but speeds up after a sufficient amount of iron oxide has built up. An incomplete removal of iron oxide encrustations during rehabilitation leads to a renewed increase in catalytic efficiency and encrustation precipitation.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号