首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   542篇
  免费   8篇
  国内免费   3篇
测绘学   9篇
大气科学   71篇
地球物理   116篇
地质学   200篇
海洋学   31篇
天文学   80篇
综合类   1篇
自然地理   45篇
  2022年   4篇
  2021年   8篇
  2019年   5篇
  2018年   9篇
  2017年   5篇
  2016年   11篇
  2015年   7篇
  2014年   13篇
  2013年   23篇
  2012年   20篇
  2011年   20篇
  2010年   19篇
  2009年   32篇
  2008年   20篇
  2007年   25篇
  2006年   19篇
  2005年   16篇
  2004年   10篇
  2003年   17篇
  2002年   14篇
  2001年   12篇
  2000年   6篇
  1999年   6篇
  1998年   10篇
  1997年   8篇
  1996年   9篇
  1995年   8篇
  1994年   9篇
  1993年   6篇
  1991年   7篇
  1990年   10篇
  1989年   6篇
  1988年   9篇
  1987年   8篇
  1986年   9篇
  1985年   10篇
  1984年   9篇
  1983年   6篇
  1982年   10篇
  1981年   11篇
  1980年   10篇
  1979年   10篇
  1978年   9篇
  1977年   6篇
  1976年   8篇
  1975年   11篇
  1974年   5篇
  1973年   10篇
  1971年   3篇
  1969年   6篇
排序方式: 共有553条查询结果,搜索用时 15 毫秒
101.
Deep (> 5 m) sheeting fractures in the Navajo sandstone are evident at numerous sites in southern Utah and derive from tectonic stresses. Strong diurnal thermal cycles are, however, the likely triggers for shallow (< 0.3 m) sheeting fractures. Data from subsurface thermal sensors reveal that large temperature differences between sensors at 2 and 15 cm depth on clear summer afternoons are as great as those that trigger sheeting fractures in exposed California granite. Extensive polygonal patterns in the Navajo sandstone are composed of surface-perpendicular fractures and were produced by contractile stresses. Numerous studies have shown that porewater diminishes the tensile strength of sandstone. Based on our thermal records, we propose that cooling during monsoonal rainstorms triggers polygonal fracturing of temporarily weakened rock. On steep outcrops, polygonal patterns are rectilinear and orthogonal, with T-vertices. Lower-angle slopes host hexagonal patterns (defined by the dominance of Y-vertices). Intermediate patterns with rectangles and hexagons of similar scale are common. We posit that outcropping fractures are advancing downward by iterative steps, and that hexagons on sandstone surfaces (like prismatic columns of basalt) have evolved from ancestral orthogonal polygons of similar scale. In lava flows, fractures elongate intermittently as they follow a steep thermal gradient (the source of stress) as it rapidly moves through the rock mass. In our model, a steep, surficial thermal gradient descends through unfractured sandstone, but at the slow pace of granular disintegration. Through time, as the friable rock on stable slopes erodes, iterative cracking advances into new space. Hexagonal patterns form as new fractures, imperfectly guided by the older ones, propagate in new directions, and vertices drift into a configuration that minimizes the ratio of fracture length to polygon area. © 2020 John Wiley & Sons, Ltd.  相似文献   
102.
The Community Atmosphere Model (CAM), a 3-dimensional Earth-based climate model, has been modified to simulate the dynamics of the Venus atmosphere. The most current finite volume version of CAM is used with Earth-related processes removed, parameters appropriate for Venus introduced, and some basic physics approximations adopted. A simplified Newtonian cooling approximation has been used for the radiation scheme. We use a high resolution (1° by 1° in latitude and longitude) to take account of small-scale dynamical processes that might be important on Venus. A Rayleigh friction approach is used at the lower boundary to represent surface drag, and a similar approach is implemented in the uppermost few model levels providing a ‘sponge layer’ to prevent wave reflection from the upper boundary. The simulations generate superrotation with wind velocities comparable to those measured in the Venus atmosphere by probes and around 50-60% of those measured by cloud tracking. At cloud heights and above the atmosphere is always superrotating with mid-latitude zonal jets that wax and wane on an approximate 10 year cycle. However, below the clouds, the zonal winds vary periodically on a decadal timescale between superrotation and subrotation. Both subrotating and superrotating mid-latitude jets are found in the approximate 40-60 km altitude range. The growth and decay of the sub-cloud level jets also occur on the decadal timescale. Though subrotating zonal winds are found below the clouds, the total angular momentum of the atmosphere is always in the sense of superrotation. The global relative angular momentum of the atmosphere oscillates with an amplitude of about 5% on the approximate 10 year timescale. Symmetric instability in the near surface equatorial atmosphere might be the source of the decadal oscillation in the atmospheric state. Analyses of angular momentum transport show that all the jets are built up by poleward transport by a meridional circulation while angular momentum is redistributed to lower latitudes primarily by transient eddies. Possible changes in the structure of Venus’ cloud level mid-latitude jets measured by Mariner 10, Pioneer Venus, and Venus Express suggest that a cyclic variation similar to that found in the model might occur in the real Venus atmosphere, although no subrotating winds below the cloud level have been observed to date. Venus’ atmosphere must be observed over multi-year timescales and below the clouds if we are to understand its dynamics.  相似文献   
103.
104.
The build-up of methane in the hypolimnion of the eutrophic Lake Rotsee (Lucerne, Switzerland) was monitored over a full year. Sources and sinks of methane in the water column were characterized by measuring concentrations and carbon isotopic composition. In fall, high methane concentrations (up to 1 mM) were measured in the anoxic water layer. In the oxic layer, methane concentrations were much lower and the isotopic composition shifted towards heavy carbon isotopes. Methane oxidation rates peaked at the interface between oxic and anoxic water layers at around 8–10 m depth. The electron balance between the oxidants oxygen, sulphate, and nitrate, and the reductants methane, sulphide and ammonium, matched very well in the chemocline during the stratified season. The profile of carbon isotopic composition of methane showed strong indications for methane oxidation at the chemocline (including the oxycline). Aerobic methane oxidizing bacteria were detected at the interface using fluorescence in situ hybridization. Sequencing the responsible organisms from DGGE bands revealed that aerobic methanotrophs type I closely related to Methylomonas were present. Sulphate consumption occurred at the sediment surface and, only towards the end of the stagnation period, matched with a zone of methane consumption. In any case, the flux of sulphate below the chemocline was not sufficient to oxidize all the methane and other oxidants like nitrate, iron or manganese are necessary for the observed methane oxidation. Although most of the methane was oxidized either aerobically or anaerobically, Lake Rotsee was still a source of methane to the atmosphere with emission rates between 0.2 mg CH4 m?2 day?1 in February and 7 mg CH4 m?2 day?1 in November.  相似文献   
105.
The Pemali Formation is revised from being the oldest known sedimentary unit in north Central Java to being almost the youngest. This, and a new examination of its composition, has implications for regional geological models and petroleum geology. The Pemali Formation was originally interpreted as “early Miocene” but is now shown to be latest Miocene through Pliocene in age, and characterised by both very high rates of sedimentation and a particularly high degree of reworking. The mid-Late Miocene tectonic event that initiated deposition of this formation created a new series of basins that were filled by erosion of new structural highs. Continuing constriction of the basins resulted in the uplift of older Pemali sediments on the basin margins, being reworked into the youngest Pemali strata.Neither the Pemali Formation nor the associated uplift and erosion are seen in the basins in the Java Sea a short distance to the north. Both the severe effects of the mid-Late Miocene tectonism and the Pemali-type sediments are restricted to a particular geologic zone, which is roughly the same as the modern island of Java. This may be above lithosphere of mixed terranes that forms a rim to the sialic Sunda Plate. The onshore Java area has a history of severe tectonism through the Tertiary and consequently a stratigraphy that greatly contrasts with that of the present-day Java Sea.The localised and thick Pemali deposition affected the burial history and the generation of hydrocarbons around the mid-Late Miocene basins, whilst the uplifted areas may include hydrocarbon traps. If basement composition influenced the location and thickness of the Pemali Formation then it is also likely to have fundamentally controlled deposition of older formations, including the unknown source rock for surface oil seeps. Likewise, these controls appear to contrast strongly with the better known rift-sag basins of the Java Sea.  相似文献   
106.
Rivers in drylands typically are characterized by extreme flow variability, with long periods of little or no flow interspersed with occasional large, sometimes extreme, floods. Complete adjustment of river form and process is sometimes inhibited, resulting in a common assumption that equilibrium conditions may rarely, if ever, exist in dryland rivers, and that transient and unstable (nonequilibrium) behavior is the norm. Examples from the Channel Country and the Northern Plains in central Australia challenge that notion. Along the middle reaches of these intermediate and large, low-gradient rivers, where long duration floods generate moderate to low unit stream powers and boundary resistance is high as a result of indurated alluvial terraces, cohesive muds or riparian vegetation, there is evidence that: (1) channels have remained essentially stable despite large floods; (2) sediment transport discontinuities, while present at a catchment scale, are largely insignificant for channel form and process in individual reaches; (3) there are strong correlations between many channel form and process variables; and (4) many rivers appear to be adjusted to maximum sediment transport efficiency under conditions of low gradient, abundant within-channel vegetation and declining downstream discharge. In these middle reaches, rivers are characterized by equilibrium conditions. However, in the aggradational lower reaches of rivers on the Northern Plains, where upstream terraces are buried by younger sediments and channels are less confined, nonequilibrium conditions prevail. Here, channels sometimes undergo sudden and substantial changes in form during large floods, sediment transport discontinuities are readily apparent, and landforms such as splays remain out-of-balance with normal flows. Hence, dryland rivers can exhibit both equilibrium and nonequilibrium conditions, depending on factors such as catchment size, channel gradient, flood duration, unit stream power, channel confinement, sediment cohesion, and bank strength. [Key words: dryland rivers, floods, equilibrium, nonequilibrium, central Australia.]  相似文献   
107.
This study assesses the regional-scale summer precipitation produced by the dynamical downscaling of analyzed large-scale fields. The main goal of this study is to investigate how much the regional model adds smaller scale precipitation information that the large-scale fields do not resolve. The modeling region for this study covers the southeastern United States (Florida, Georgia, Alabama, South Carolina, and North Carolina) where the summer climate is subtropical in nature, with a heavy influence of regional-scale convection. The coarse resolution (2.5° latitude/longitude) large-scale atmospheric variables from the National Center for Environmental Prediction (NCEP)/DOE reanalysis (R2) are downscaled using the NCEP/Environmental Climate Prediction Center regional spectral model (RSM) to produce precipitation at 20?km resolution for 16 summer seasons (1990?C2005). The RSM produces realistic details in the regional summer precipitation at 20?km resolution. Compared to R2, the RSM-produced monthly precipitation shows better agreement with observations. There is a reduced wet bias and a more realistic spatial pattern of the precipitation climatology compared with the interpolated R2 values. The root mean square errors of the monthly R2 precipitation are reduced over 93% (1,697) of all the grid points in the five states (1,821). The temporal correlation also improves over 92% (1,675) of all grid points such that the domain-averaged correlation increases from 0.38 (R2) to 0.55 (RSM). The RSM accurately reproduces the first two observed eigenmodes, compared with the R2 product for which the second mode is not properly reproduced. The spatial patterns for wet versus dry summer years are also successfully simulated in RSM. For shorter time scales, the RSM resolves heavy rainfall events and their frequency better than R2. Correlation and categorical classification (above/near/below average) for the monthly frequency of heavy precipitation days is also significantly improved by the RSM.  相似文献   
108.
109.
This study examines the tropical storms simulated in the Modern-Era Retrospective analysis for Research and Applications (MERRA) global atmospheric reanalysis for the recent 12 years (1998–2009), focusing on the tropical storm activity over the Northwestern Pacific. For validation, the International Best Track Archive for Climate Stewardship (IBTrACS) dataset is used as an observational counterpart. Climatological-mean features of the tropical storm genesis, tracks and their maximum intensity are the primary interests in this study. Regarding the genesis location of tropical storms, MERRA is reasonable in resolving major development regions over the South China Sea and the Northwestern Pacific close to the Philippines. The seasonal variation of the number of storms is also reproduced in a realistic way in MERRA, with peak values occurring from July to September. In addition, MERRA tends to reproduce the observed interannual variation of the number of tropical storms during the 12-years, though with a limited accuracy. The simulated paths toward higher latitudes are also reasonable in MERRA, where the reanalysis corresponds well with the observations in resolving frequent paths of westward moving storms and recurving storms toward the northeast. Regarding the intensity, MERRA captures the linear relationship between the minimum center pressure and the maximum wind speed near the surface at the maximum development. Some discrepancies from the observed features are found in the reanalysis, such as less frequent development of storms over the South China Sea and less frequent paths over this region. The reanalysis also does not attain the observed maximum intensity for the resolved tropical storms, particularly underestimating the center pressure. These deficiencies are likely related to limitations in the horizontal resolution and the parameterized physics of the data assimilation system.  相似文献   
110.
Cu- and Mn-bearing tourmalines from Brazil and Mozambique were characterised chemically (EMPA and LA-ICP-MS) and by X-ray single-crystal structure refinement. All these samples are rich in Al, Li and F (fluor-elbaite) and contain significant amounts of CuO (up to ~1.8 wt%) and MnO (up to ~3.5 wt%). Structurally investigated samples show a pronounced positive correlation between the <Y-O> distances and the (Li + Mn2+ + Cu + Fe2+) content (apfu) at this site with R 2 = 0.90. An excellent negative correlation exists between the <Y-O> distances and the Al2O3 content (R 2 = 0.94). The samples at each locality generally show a strong negative correlation between the X-site vacancies and the (MnO + FeO) content. The Mn content in these tourmalines depends on the availability of Mn, on the formation temperature, as well as on stereochemical constraints. Because of a very weak correlation between MnO and CuO we believe that the Cu content in tourmaline is essentially dependent on the availability of Cu and on stereochemical constraints.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号