首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   542篇
  免费   8篇
  国内免费   3篇
测绘学   9篇
大气科学   71篇
地球物理   116篇
地质学   200篇
海洋学   31篇
天文学   80篇
综合类   1篇
自然地理   45篇
  2022年   4篇
  2021年   8篇
  2019年   5篇
  2018年   9篇
  2017年   5篇
  2016年   11篇
  2015年   7篇
  2014年   13篇
  2013年   23篇
  2012年   20篇
  2011年   20篇
  2010年   19篇
  2009年   32篇
  2008年   20篇
  2007年   25篇
  2006年   19篇
  2005年   16篇
  2004年   10篇
  2003年   17篇
  2002年   14篇
  2001年   12篇
  2000年   6篇
  1999年   6篇
  1998年   10篇
  1997年   8篇
  1996年   9篇
  1995年   8篇
  1994年   9篇
  1993年   6篇
  1991年   7篇
  1990年   10篇
  1989年   6篇
  1988年   9篇
  1987年   8篇
  1986年   9篇
  1985年   10篇
  1984年   9篇
  1983年   6篇
  1982年   10篇
  1981年   11篇
  1980年   10篇
  1979年   10篇
  1978年   9篇
  1977年   6篇
  1976年   8篇
  1975年   11篇
  1974年   5篇
  1973年   10篇
  1971年   3篇
  1969年   6篇
排序方式: 共有553条查询结果,搜索用时 593 毫秒
131.
Climatology and interannual variations of wintertime extratropical cyclone frequency in CCSM3 twentieth century simulation are compared with the NCEP/NCAR reanalysis during 1950–1999. CCSM3 can simulate the storm tracks reasonably well, although the model produces slightly less cyclones at the beginning of the Pacific and Atlantic storm tracks and weaker poleward deflection over the Pacific. As in the reanalysis, frequency of cyclones stronger than 980 hPa shows significant correlation with the Pacific/North America (PNA) teleconnection pattern over the Pacific region and with the North Atlantic Oscillation (NAO) in the Atlantic sector. Composite maps are constructed for opposite phases of El Nino-Southern Oscillation (ENSO) and the NAO and all anomalous patterns coincide with observed. One CCSM3 twenty-first century A1B scenario realization indicates there is significant increase in the extratropical cyclone frequency on the US west coast and decrease in Alaska. Meanwhile, cyclone frequency increases from the Great Lakes region to Quebec and decreases over the US east coast, suggesting a possible northward shift of the Atlantic storm tracks under the warmer climate. The cyclone frequency anomalies are closely linked to changes in seasonal mean states of the upper-troposphere zonal wind and baroclinicity in the lower troposphere. Due to lack of 6-hourly outputs, we cannot apply the cyclone-tracking algorithm to the other eight CCSM3 realizations. Based on the linkage between the mean state change and the cyclone frequency anomalies, it is likely a common feature among the other ensemble members that cyclone activity is reduced on the East Coast and in Alaska as a result of global warming.  相似文献   
132.
The present paper examines the vortex breakdown and large-scale stirring during the final warming of the Southern Hemisphere stratosphere during the spring of 2005. A unique set of in situ observations collected by 27 superpressure balloons (SPBs) is used. The balloons, which were launched from McMurdo, Antarctica, by the Stratéole/VORCORE project, drifted for several weeks on two different isopycnic levels in the lower stratosphere. We describe balloon trajectories and compare them with simulations obtained on the basis of the velocity field from the GEOS-5 and NCEP/NCAR reanalyses performed with and without VORCORE data. To gain insight on the mechanisms responsible for the horizontal transport of air inside and outside the well-isolated vortex we examine the balloon trajectories in the framework of the Lagrangian properties of the stratospheric flow. Coherent structures of the flow are visualized by computing finite-time Lyapunov exponents (FTLE). A combination of isentropic analysis and FTLE distributions reveals that air is stripped away from the vortex’s interior as stable manifolds eventually cross the vortex’s edge. It is shown that two SPBs escaped from the vortex within high potential vorticity tongues that developed in association with wave breaking at locations along the vortex’s edge where forward and backward FTLE maxima approximately intersect. The trajectories of three SPBs flying as a group at the same isopycnic level are examined and their behavior is interpreted in reference to the FTLE field. These results support the concept of stable and unstable manifolds governing transport of air masses across the periphery of the stratospheric polar vortex.  相似文献   
133.
Spatial climate models were developed for México and its periphery (southern USA, Cuba, Belize and Guatemala) for monthly normals (1961–1990) of average, maximum and minimum temperature and precipitation using thin plate smoothing splines of ANUSPLIN software on ca. 3,800 observations. The fit of the model was generally good: the signal was considerably less than one-half of the number of observations, and reasonable standard errors for the surfaces would be less than 1°C for temperature and 10–15% for precipitation. Monthly normals were updated for three time periods according to three General Circulation Models and three emission scenarios. On average, mean annual temperature would increase 1.5°C by year 2030, 2.3°C by year 2060 and 3.7°C by year 2090; annual precipitation would decrease ?6.7% by year 2030, ?9.0% by year 2060 and ?18.2% by year 2090. By converting monthly means into a series of variables relevant to biology (e. g., degree-days > 5°C, aridity index), the models are directly suited for inferring plant–climate relationships and, therefore, in assessing impact of and developing programs for accommodating global warming. Programs are outlined for (a) assisting migration of four commercially important species of pine distributed in altitudinal sequence in Michoacán State (b) developing conservation programs in the floristically diverse Tehuacán Valley, and (c) perpetuating Pinus chiapensis, a threatened endemic. Climate surfaces, point or gridded climatic estimates and maps are available at http://forest.moscowfsl.wsu.edu/climate/.  相似文献   
134.
This paper briefly presents the West African Monsoon (WAM) Modeling and Evaluation Project (WAMME) and evaluates WAMME general circulation models’ (GCM) performances in simulating variability of WAM precipitation, surface temperature, and major circulation features at seasonal and intraseasonal scales in the first WAMME experiment. The analyses indicate that models with specified sea surface temperature generally have reasonable simulations of the pattern of spatial distribution of WAM seasonal mean precipitation and surface temperature as well as the averaged zonal wind in latitude-height cross-section and low level circulation. But there are large differences among models in simulating spatial correlation, intensity, and variance of precipitation compared with observations. Furthermore, the majority of models fail to produce proper intensities of the African Easterly Jet (AEJ) and the tropical easterly jet. AMMA Land Surface Model Intercomparison Project (ALMIP) data are used to analyze the association between simulated surface processes and the WAM and to investigate the WAM mechanism. It has been identified that the spatial distributions of surface sensible heat flux, surface temperature, and moisture convergence are closely associated with the simulated spatial distribution of precipitation; while surface latent heat flux is closely associated with the AEJ and contributes to divergence in AEJ simulation. Common empirical orthogonal functions (CEOF) analysis is applied to characterize the WAM precipitation evolution and has identified a major WAM precipitation mode and two temperature modes (Sahara mode and Sahel mode). Results indicate that the WAMME models produce reasonable temporal evolutions of major CEOF modes but have deficiencies/uncertainties in producing variances explained by major modes. Furthermore, the CEOF analysis shows that WAM precipitation evolution is closely related to the enhanced Sahara mode and the weakened Sahel mode, supporting the evidence revealed in the analysis using ALMIP data. An analysis of variability of CEOF modes suggests that the Sahara mode leads the WAM evolution, and divergence in simulating this mode contributes to discrepancies in the precipitation simulation.  相似文献   
135.
136.
Constraining slip rates and spacings for active normal faults   总被引:1,自引:0,他引:1  
Numerous observations of extensional provinces indicate that neighbouring faults commonly slip at different rates and, moreover, may be active over different time intervals. These published observations include variations in slip rate measured along-strike of a fault array or fault zone, as well as significant across-strike differences in the timing and rates of movement on faults that have a similar orientation with respect to the regional stress field. Here we review published examples from the western USA, the North Sea, and central Greece, and present new data from the Italian Apennines that support the idea that such variations are systematic and thus to some extent predictable. The basis for the prediction is that: (1) the way in which a fault grows is fundamentally controlled by the ratio of maximum displacement to length, and (2) the regional strain rate must remain approximately constant through time. We show how data on fault lengths and displacements can be used to model the observed patterns of long-term slip rate where measured values are sparse. Specifically, we estimate the magnitude of spatial variation in slip rate along-strike and relate it to the across-strike spacing between active faults.  相似文献   
137.
138.
The objectives of this study were to determine the tolerance of various life stages of zebra mussels to salinity; determine the extent to which acclimation events in estuarine systems, affect tolerance of zebra mussels; and determine the effects of salinity on health or condition of adult zebra mussels. At high temperatures (18–20°C), the condition of zebra mussels is reduced at salinities above 1%.. However, at lower temperatures (3–12°C), the optimum salinity for zebra mussels is 2–4%.. The incipient lethal salinity of post-veligers is near 2%., of larger adults (5–15 mm) between 2%. and 4%., and of veliger larvae near 4.5%.. Zebra mussels are able to acclimate to slowly changing salinities (i.e., 1%. d?1) such that the time to 50% mortality of a population should be greater than 1 yr at temperatures near 20°C and salinites up to 8%.  相似文献   
139.
The morphologies of calcite grain boundaries were analyzed to provide insight into the evolution of pore networks in unfractured rock. Two synthetic calcite rocks were fabricated by hot isostatically pressing (HIP-ing) dried analytical-grade powders of pure CaCO3 and CaCO3 plus 5% Al2O3 at 600° C and 200 MPa confining pressure for 3 hours (HIP-1). Some samples were HIPed a second time at different temperatures and pressures to investigate the stability of the structures (HIP-2a-c). SEM and TEM were used to image both grain faces and grain boundary cross-sections. Structures on grain faces vary from open shallow basins with peripheral rims, to labyrinths of irregular ridges and channels, to isolated circular depressions. All of these structures are mirrored across the plane between grain faces. The grain size in both the single and two-phase samples increased markedly during HIP-1. Migrating boundaries either dragged pores along or broke away leaving grain interiors dotted with small voids. The structures present after HIP-1 were not stable but evolved considerably in a way dependent on the conditions of the HIP-2. Confining pressure had the most pronounced effect. With low confining pressure, the grain-boundary porosity evolved into isolated circular depressions but the total pore volume did not noticeably decrease. With high confining pressure, the pore volume virtually disappeared. The structures present after HIP-1 are strikingly similar to those that develop in intragranular cracks during healing. We infer that grain boundaries and intragranular cracks heal by similar processes. Decomposition, localized melting, impurities, and anisotropic surface energies played no evident role in forming the grain-boundary structures. The timing of the formation of the porosity and of the subsequent healing processes is more difficult to ascertain. Some structures appear to have evolved gradually throughout the constant, high temperature stage of HIPing. The most obvious structures, however, appear to have evolved on grain boundary cracks that opened during cooling.  相似文献   
140.
Experimental observations of cellular convection between two rigid, horizontal, conducting boundaries are reported for two different cases. First, the stability of two-dimensional roll convection of various wavenumbers and Rayleigh numbers is investigated in fluids of Prandtl numbers 16 and 2.7. The results qualitatively agree with earlier observations by Busse and Whitehead of fluid with Prandtl number 126 but they differ somewhat quantitatively. Second, the stability of the bimodal flow, consisting of two rolls of differing and perpendicular wavenumber, is observed to be stable for given bandwidths and ranges of Rayleigh numbers when the configuration of the bimodal flow, consisting of two sets of rolls at right angles, is flawless — without any disruptions in the periodic matrix. The stability range differs from earlier experiments and from our own experiments in which the bimodal planform is uncontrolled.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号