首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
大气科学   2篇
地球物理   4篇
地质学   14篇
天文学   1篇
综合类   1篇
  2019年   1篇
  2016年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1992年   1篇
  1989年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有22条查询结果,搜索用时 46 毫秒
21.
Recent high-resolution models of past plate motions and their comparison with plate motion models inferred from space geodetic techniques reveal a number of short-term variations in global plate velocities over the past 10 Myrs. Such variations serve as powerful probe into the nature and magnitude of plate boundary forces, because they are unlikely to originate from changes in mantle buoyancy forces, which evolve on longer time scales. Here we explore the constraints of the velocity record using a novel coupled modeling-approach of global neo-tectonic simulations combined with realistic plate driving forces obtained from mantle circulation models (MCMs) to arrive at simple global budgets of mantle, lithosphere and plate boundary forces. We focus on three plate boundary systems along the Nazca/South America plate margin, the Aleutian trench and the India/Australia plate boundary to show that gravitational spreading from high topography in the Andes and Tibet contributes substantially to the global plate tectonic force balance and that this contribution is sufficient to explain some 35% of recent velocity changes over the Earth's surface, including among others the observed 30% convergence reduction between the Nazca/South America plates. Our models make a number of specific predictions such as significant lateral variations in plate coupling forces along a given margin revealed by trench-parallel gravity and bathymetry anomalies and the occurrence of large earthquakes, as well as differences by as much as a factor of five from margin to margin. They also support the notion of a relatively young plate boundary separating the India and Australia plates, which has been previously suggested based on independent observations. Importantly, we find that the modeled Nazca/South America convergence reduction explains recent spreading-rate variations in the South Atlantic and South Pacific, which points to the importance of far field effects on the adjacent continents in explaining the spreading record of oceanic basins. Our numerical results demonstrate (a) that detailed budgets of forces acting upon plates can be obtained and (b) support the notion of strong forcing along weak plate boundaries.  相似文献   
22.
The Punta Falcone gabbroic complex represents an evolved high-alumina basalt which rose from the mantle through the lower crust, and subsequently intruded a granite magma in middle crustal levels, during the calc-alkaline magmatic activity which took place in the Sardinian and Corsican islands in the Carboniferous. The gabbroic complex has a stratified sub-vertical structure, and consists of three zones developing from the bottom to the top of the magma chamber. An interaction zone can be recognized along contacts with the surrounding granite stock, and it is characterized by finer-grained and more evolved rocks than the interior of the gabbroic complex. Processes occurring in its interior zone have been substantially different from those occurring in its marginal interaction zone. Petrographical and geochemical features indicate that the differentiation of the interior of the gabbroic complex can be accounted for by low pressure, closed-system in-situ crystallization. The different gabbroic units represent mixtures between cumulus phases and trapped liquid. Plagioclase + pyroxenes, and successively plagioclase + calcic amphibole + oxides nucleated and grew in-situ on the floor and walls of the chamber. Floating of plagioclase towards the top of the magma chamber resulted in the accumulation of the denser liquid at the bottom. Compaction phenomena and convective fractionation processes permitted the development of the pile of cumulus crystals with their trapped liquid, and the migration of part of this evolved liquid towards the top of the magma chamber. On the basis of major and trace element modelling a mathematical artifice has been developed to evaluate cumulus-intercumulus processes that occurred in the interior of the gabbroic complex. Accordingly, the formation of the different units can be modelled by mixtures between the parental magma and different percentages of minerals formed during the first stages of crystallization. Contemporaneously with the differentiation of the interior zone, the envelope of fine-grained rocks enclosing and grading into the coarser inner part of the gabbroic complex experienced both chemical and physical processes. Chemical processes resulted in the evolution of the marginal interaction zone by crystal fractionation plus contamination by the acid magma. Physical processes were closely related to the thermodynamic instability of this marginal zone, and consisted of mingling and back veining phenomena which developed interdigitations of granite veins along contacts. In addition, an increase of the melt fraction of the granite magma, superheated by the latent heat of crystallization of the mafic magma, caused the occurrence of tilting of the mafic magma chamber, and resulted in the development of the sub-vertical structure of the gabbroic complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号