首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
大气科学   3篇
地球物理   11篇
地质学   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2011年   3篇
  2008年   2篇
  2005年   2篇
  2002年   1篇
排序方式: 共有15条查询结果,搜索用时 171 毫秒
11.
On 15 July 2009, a Mw 7.8 earthquake occurred off the New Zealand coast, which by serendipitous coincidence occurred while the International Tsunami Symposium was in session in Novosibirsk, Russia. The earthquake generated a tsunami that propagated across the Tasman Sea and was detected in New Zealand, Australia and as far away as the US West coast. Small boats close to the epicenter were placed in jeopardy, but no significant damage was observed despite a measured run-up height of 2.3 m in one of the Sounds in close proximity to the source (Wilson in GNS Science Report 46:62 2009). Peak-to-trough tsunami heights of 55 cm were measured at Southport, Tasmania and a height of 1 m was measured in Jackson Bay, New Zealand. The International Tsunami Symposium provided an ideal venue for illustration of the value of immediate real-time assessment and provided an opportunity to further validate the real time forecasting capabilities with the scientific community in attendance. A number of agencies with responsibility for tsunami forecast and/or warning, such as the NOAA Center for Tsunami Research, the Pacific Tsunami Warning Center, GNS Science in New Zealand, the Australian Bureau of Meteorology and the European Commission Joint Research Centre were all represented at the meeting and were able to demonstrate the use of state of the art numerical models to assess the tsunami potential and provide warning as appropriate.  相似文献   
12.

Following the 1st International Workshop on Waves, Storm Surges and Coastal Hazards, which incorporated the 15th session of the long-standing the International Workshop on Wave Hindcasting and Forecasting, in September 2017 in Liverpool, United Kingdom, a topical collection has appeared in recent issues of Ocean Dynamics. Here, we give a brief overview of the 15 papers published in this topical collection as well as an overview of the widening scope of the conference in recent years. The continuing trend towards closer integration between the wave and ocean modeling communities is reflected in this workshop, culminating in the renaming of the workshop, while maintaining the connection with the three-decade long history of the wave workshop. This is also seen in this topical collection, with several papers exploring wave-generated storm surge, wave-tide contributions to coastal flooding, forcing a global ocean model with fluxes from a wave model and interaction between surface waves and sea ice.

  相似文献   
13.
Ocean Dynamics - This paper describes a series of hindcast simulations of 17 tropical cyclones over the northwest shelf region of Australia. Tropical cyclone track and vortex details were obtained...  相似文献   
14.
15.
Recent work has demonstrated that surface marine winds from the Bureau of Meteorology's operational Numerical Weather Prediction (NWP) systems are typically underestimated by 5 to 10%. This is likely to cause significant bias in modelled wave fields that are forced by these winds. A simple statistical adjustment of the wind components is shown to reduce the observed bias in Significant Wave Height considerably. The impact of increasing the vertical resolution of the NWP model and assimilating scatterometer data into the model is assessed by comparing the resulting forecast wind and waves to observations. It is found that, in general, the inclusion of scatterometer observations improves the accuracy of the surface wind forecasts. However, most of the improvement is shown to arise from the increased number of vertical levels in the atmospheric model, rather than directly from the use of the observations. When the wave model is forced with surface winds from the NWP model that includes scatterometer data, it is found that the scatterometer assimilation does not reduce the systematic bias in surface wave forecasts, but that the random errors are reduced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号