首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   19篇
  国内免费   2篇
测绘学   9篇
大气科学   34篇
地球物理   74篇
地质学   141篇
海洋学   17篇
天文学   30篇
自然地理   19篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   9篇
  2020年   9篇
  2019年   15篇
  2018年   12篇
  2017年   16篇
  2016年   20篇
  2015年   15篇
  2014年   16篇
  2013年   22篇
  2012年   13篇
  2011年   29篇
  2010年   29篇
  2009年   21篇
  2008年   16篇
  2007年   11篇
  2006年   13篇
  2005年   4篇
  2004年   9篇
  2003年   2篇
  2002年   9篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1982年   1篇
  1978年   2篇
  1975年   4篇
  1974年   2篇
  1973年   1篇
排序方式: 共有324条查询结果,搜索用时 31 毫秒
241.
242.
A digital correlator is a crucial element in a modern radio telescope. In this paper, we describe a scalable design for the correlator system of the Tianlai pathfinder array, which is an experiment dedicated to testing key technologies for conducting a 21 cm intensity mapping survey. The correlator implements the FX design, which firstly performs a fast Fourier transform(FFT) including polyphase filter bank(PFB) computation using a Collaboration for Astronomy Signal Processing and Electronics Research(CASPER) Reconfigurable Open Architecture Computing Hardware-2(ROACH2) board, then computes cross-correlations by employing Graphics Processing Units(GPUs). The design has been tested both in laboratory and in actual observation.  相似文献   
243.
The role of spatiotemporally varying tectonic forcing in the development of stratigraphic patterns along passive margins and continental rift basins has been recognized for decades, but the exact nature of the stratigraphic response is still debated. This study develops a coupled tectonic‐stratigraphic numerical model with a fixed absolute lake level and constant climate conditions to quantify the signatures of spatiotemporally varying tectonic forcing on the stratigraphic record. This model consists of a three‐dimensional rift basin with a range of geomorphic features and produces a number of well‐recognized stratigraphic patterns, which are commonly interpreted to be caused by lake‐/sea‐level or climate fluctuations. This study demonstrates that the shoreline and grain‐size front are decoupled through the adjustment of the depositional slope and sediment dispersal under spatiotemporally varying tectonic forcing, especially in underfilled basins. Under such a decoupled situation, the pathway of the migrating subsidence centre correlates with the pathway of the grain‐size front, a result of competition between spatiotemporally varying tectonic forcing and autogenic sediment transport. The model results also highlight the significance of three‐dimensional variability in the stratigraphic response to tectonic forcing, which may be overlooked or misinterpreted and suggests a high degree of uncertainty in re‐establishing the base‐level cycles from the stratigraphic record alone. Moreover, spectral analysis of the modelled stratigraphy and tectonic forcing suggests that low‐frequency tectonic signals are more likely to be recorded in the stratigraphy with a lag time, whereas high‐frequency tectonic signals are likely to be shredded, mixed with autogenic signals, or buffered through sediment‐routing systems. Finally, quantitative measurements of the stratigraphic architecture of the Nanpu sag in the Bohai Bay Basin, China are used to tune the numerical model of this study to illustrate how to evaluate the role of tectonic forcing on the development of characteristic stratigraphic sequences.  相似文献   
244.
The Adelaide Basin in Australia is a complex of late Neoproterozoic to Early Cambrian rift and sag basins which was inverted during the Cambro–Ordovician Delamerian Orogeny. The deposition of evaporitic sediments during the earliest stage of basin development in the late Neoproterozoic (Willouran age) played a major role in the subsequent tectonic evolution of the basin. Previous studies have shown that early mobilization, vertical transport and withdrawal of the evaporites influenced the sedimentation during the late Neoproterozoic and Early Cambrian. The evaporites also influenced deformation during the inversion of the basin and the development of the Delamerian fold and thrust belt. However, the control exerted by basement structures in the deposition of the evaporitic beds and the role of these tectonic structures in the later inversion of the basin have been poorly constrained.  相似文献   
245.
In snow-fed catchments, it is crucial to monitor and model the snow water equivalent (SWE), particularly when simulating the melt water runoff. SWE distribution can, however, be highly heterogeneous, particularly in forested environments. Within these locations, scant studies have explored the spatiotemporal variability in SWE in relation with vegetation characteristics, with only few successful attempts. The aim of this paper is to fill this knowledge gap, through a detailed monitoring at nine locations within a 3.49 km2 forested catchment in southern Québec, Canada (47°N, 71°W). The catchment receives an annual average of 633 mm of solid precipitation and is predominantly covered with balsam fir stands. Extracted from intensive field campaign and high-resolution LiDAR data, this study explores the effect of fine scale forest features (tree height, tree diameter, canopy density, leaf area index [LAI], tree density and gap fraction) on the spatiotemporal variability in the SWE distribution. A nested stratified random sampling design was adopted to quantify small-scale variability across the catchment and 1810 manual snow samples were collected throughout the consecutive winters of 2016–17 and 2017–18. This study explored the variability of SWE using coefficients of variation (CV) and relating to the LAI. We also present existing spatiotemporal differences in maximum snow depth across different stands and its relationship with average tree diameter. Furthermore, exploiting key vegetation characteristics, this paper explores different approaches to model SWE, such as multiple linear regression, binary regression tree and neural networks (NN). We were unable to establish any relationship between the CV of SWE and the LAI. However, we observed an increase in maximum snow depth with decreasing tree diameter, suggesting an association between these variables. NN modelling (Nash-Sutcliffe efficiency [NSE] = 0.71) revealed that, snow depth, snowpack age and forest characteristics (tree diameter and tree density) are key controlling variables on SWE. Using only variables that are deemed to be more readily available (snow depth, tree height, snowpack age and elevation), NN performance falls by only 7% (NSE = 0.66).  相似文献   
246.
The precision of Lake Champlain's water level estimation is a key component in the flood forecasting process for the Richelieu River. Hydrological models do not typically take into consideration the effects of the wind on the water level (also known as the wind set-up). The objective of this study is to create an empirical wind set-up forecast model for Lake Champlain during high wind events. The proposed model uses wind speed and direction across the Lake, as well as wind gusts as inputs. The model is calibrated to a subset of observations and evaluated on an independent sample, considering four wind speed bins. It is tested and compared to a variant of the Zuider Zee equation on 20 wind set-up events that occurred between 2017 and 2019 using hindcast data from five different numerical weather prediction systems (GDPS, RDPS, HRDPS, NOAA and ECMWF). A quantile mapping-based forecast calibration scheme is implemented for each of the forecast products to correct their biases. Results show that events are successfully predicted by the proposed model at least 72 h in advance. These results are better than the other comparative models found in the literature and tested herein. Overall, significant improvements are obtained by including wind speed and wind gusts from different weather stations.  相似文献   
247.
Talc + olivine in metaperidotites result from the serpentinite breakdown due to increasing temperature in the Bergell contact aureole. Jack‐straw olivine textures are present in close proximity to the serpentine breakdown reaction. As the intrusion is approached, the number of olivine crystals increases while the size of the crystals decreases; this feature documents increased overstepping with increased heating rates. Talc veinlets are observed in the outer parts of the talc–olivine zone and are interpreted to be pathways of fluid produced during devolatilization of serpentine. None of the talc–olivine oxygen isotope pairs analysed are in isotopic equilibrium with respect to the peak contact temperature. This implies that escaping fluids cannot be in equilibrium with both phases. Hence, the fluid produced by serpentine reaction does not directly reflect the protolith composition, and attention must be given to the reaction mechanism before interpreting fluid isotope composition.  相似文献   
248.
Laurie Boithias  Yves Auda  Stéphane Audry  Jean-Pierre Bricquet  Alounsavath Chanhphengxay  Vincent Chaplot  Anneke de Rouw  Thierry Henry des Tureaux  Sylvain Huon  Jean-Louis Janeau  Keooudone Latsachack  Yann Le Troquer  Guillaume Lestrelin  Jean-Luc Maeght  Pierre Marchand  Pierre Moreau  Andrew Noble  Anne Pando-Bahuon  Kongkeo Phachomphon  Khambai Phanthavong  Alain Pierret  Olivier Ribolzi  Jean Riotte  Henri Robain  Emma Rochelle-Newall  Saysongkham Sayavong  Oloth Sengtaheuanghoung  Norbert Silvera  Nivong Sipaseuth  Bounsamay Soulileuth  Xaysatith Souliyavongsa  Phapvilay Sounyaphong  Sengkeo Tasaketh  Chanthamousone Thammahacksa  Jean-Pierre Thiebaux  Christian Valentin  Olga Vigiak  Marion Viguier  Khampaseuth Xayyathip 《水文研究》2021,35(5):e14126
Mountain regions of the humid tropics are characterized by steep slopes and heavy rains. These regions are thus prone to both high surface runoff and soil erosion. In Southeast Asia, uplands are also subject to rapid land-use change, predominantly as a result of increased population pressure and market forces. Since 1998, the Houay Pano site, located in northern Lao PDR (19.85°N 102.17°E) within the Mekong basin, aims at assessing the long-term impact of the conversion of traditional slash-and-burn cultivation systems to commercial perennial monocultures such as teak tree plantations, on the catchment hydrological response and sediment yield. The instrumented site monitors hydro-meteorological and soil loss parameters at both microplot (1 m2) and small catchment (0.6 km2) scales. The monitored catchment is part of the network of critical zone observatories named Multiscale TROPIcal CatchmentS (M-TROPICS). The data shared by M-TROPICS in Houay Pano are (1) rainfall, (2) air temperature, air relative humidity, wind speed, and global radiation, (3) catchment land use, (4) stream water level, suspended particulate matter, bed particulate matter and stones, (5) soil surface features, and (6) soil surface runoff and soil detachment. The dataset has already been used to interpret suspended particulate matter and bed particulate matter sources and dynamics, to assess the impact of land-use change on catchment hydrology, soil erosion, and sediment yields, to understand bacteria fate and weed seed transport across the catchment, and to build catchment-scale models focused on hydrology and water quality issues. The dataset may be further used to, for example, assess the role of headwater catchments in large tropical river basin hydrology, support the interpretation of new variables measured in the catchment (e.g., contaminants other than faecal bacteria), and assess the relative impacts of both climate and land-use change on the catchment.  相似文献   
249.
250.
Low pressure-high temperature (LPHT) metamorphism, with geothermal gradients in the order of 50–100°C/km, is a common feature of the late evolution of collisional orogens. These abnormal thermal conditions may be the results of complex interactions between magmatism, metamorphism and deformation. The Agly massif, in the French Pyrenees, preserves the metamorphic footprints of the late Variscan thermal structure of an almost continuous section from the upper and middle continental crust. The upper crust is characterized by a very high geothermal gradient of ~55°C/km, evolving from greenschist to amphibolite facies, while the middle crust, exposed in a gneissic core, exhibits granulite facies conditions with a near isothermal geothermal gradient (<8°C/km) between 740 and 790°C. The abnormal and discontinuous crustal geothermal gradient, dated at c. 305 Ma on syn-granulitic monazite by LA-ICP-MS, is interpreted to be the result of magmatic intrusions at different structural levels in the crust: the Ansignan charnockite (c. 305 Ma) in the deepest part of the gneissic core, the Tournefort granodiorite (c. 308 Ma) at the interface between the gneissic core and the upper crust and the Saint-Arnac granite (c. 304 Ma) in the upper section of the massif. The heat input from these magmas combined with the thermal buffering effect of the biotite dehydration-melting reaction resulted in the near isothermal geothermal gradient in the gneissic core (melt-enhanced geotherm). The higher geothermal gradient (>50°C/km) in the upper crust is only due to conduction between the hot middle crust and the Earth's surface. The estimated maximum finite pressure range suggests that ~10 to 12 km of crust are exposed in the Agly massif while the present-day thickness does not exceed 5–6 km. This pressure/depth gap is consistent with the presence of several normal mylonitic shear zones that could have contributed to the subtraction of ~5 km of the rock pile. Monazite U–Th–Pb ages carried out on monazite overgrowths from a highly mylonitized sample suggest that this vertical thinning of the massif occurred at c. 296–300 Ma. This later Variscan extension might have slightly perturbed the 305 Ma geothermal gradient, resulting in an apparent higher conductive geothermal gradient in the upper crust. Although the Agly massif has been affected by Cretaceous extension and Eocene Alpine compression, we suggest that most of the present-day thickness of the column rock was acquired by the end of the Palaeozoic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号