首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   636篇
  免费   11篇
  国内免费   2篇
测绘学   15篇
大气科学   53篇
地球物理   160篇
地质学   209篇
海洋学   48篇
天文学   82篇
综合类   4篇
自然地理   78篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   5篇
  2018年   10篇
  2017年   10篇
  2016年   20篇
  2015年   5篇
  2014年   10篇
  2013年   39篇
  2012年   15篇
  2011年   21篇
  2010年   21篇
  2009年   31篇
  2008年   34篇
  2007年   30篇
  2006年   26篇
  2005年   21篇
  2004年   22篇
  2003年   19篇
  2002年   10篇
  2001年   14篇
  2000年   19篇
  1999年   16篇
  1998年   13篇
  1997年   12篇
  1996年   19篇
  1995年   8篇
  1994年   4篇
  1993年   15篇
  1992年   7篇
  1991年   14篇
  1990年   9篇
  1989年   13篇
  1988年   5篇
  1987年   5篇
  1986年   5篇
  1985年   9篇
  1984年   5篇
  1983年   14篇
  1982年   17篇
  1981年   4篇
  1979年   10篇
  1978年   7篇
  1977年   5篇
  1975年   6篇
  1974年   7篇
  1973年   8篇
  1971年   3篇
  1930年   3篇
排序方式: 共有649条查询结果,搜索用时 17 毫秒
21.
In newly burnt and unburnt pine and eucalyptus forest in Portugal, overland flow and soil losses were monitored to assess the impacts of the following post-fire treatments: application of different quantities of logging litter; rip-ploughing compared with minimum tillage prior to planting eucalyptus seedlings; and clearance of pine needles and vegetation. Eucalyptus logging litter reduced soil losses by up to 95 per cent. The impact of pine logging litter was equivocal, but removal of pine needles increased soil losses elevenfold. Implications for soil longevity, soil quality and land management strategy are discussed.  相似文献   
22.
Summary The granites of the Sistema Central Espanol are richer in ammonium than those of most other regions, and have a mean NH4 + content of 84 ppm (range = 1–243 ppm). Among the possible causes for the high level of ammonium, a high proportion of organic-rich pelitic protolith and reducing conditions during anatexis are considered to be the most significant. The behaviour of the ammonium ion during magmatic differentiation is discussed by reference to its distribution in the Pedrobernardo layered intrusion: ammonium is depleted in the final liquid fraction, but there is no relative fractionation of NH4 + and K+. The depletion of the melt in NH4 + during crystallization is attributed to its removal by biotite and to a lesser extent by K-feldspar. The behaviour of the ammonium ion during anatexis is discussed with reference to the Peña Negra migmatite complex. It is shown that large amounts of NH4 + are present in these high grade metamorphic rocks, and that NH4 + is preferentially partitioned into the restite fraction during partial melting. These relationships are attributed to the preferential incorporation of NH4 + into potassic host minerals in the order: biotite > muscovite > K-feldspar.
Ammonium in Zentralspanischen Graniten, und das Verhalten des Ammonium-Ions während Anatexis und fraktionierter Kristallisation
Zusammenfassung Die Granite des Sistema Central Espanol sind reicher an Ammonium als die der meisten anderen Regionen, und haben einen durchschnittlichen NH4 + Gehalt von 84 ppm (von 1-243 ppm). Der hohe Ammoniumgehalt könme auf einen hohen Anteil peiitischer Ausgangsgesteine, die reich an organischen Material sind, and auf reduzierende Bedingungen während der Anatexis zurückgehen. Das Verhalten des Ammonium-Ions während magmatischer Differentiation wind in Hinblick seiner Verteilung in der geschichteten Intrusion von Pedrobernardo diskutiert: Ammonium ist in der finalen Schmelzfraktion angereichert, aber es gibt keine relative Fraktionierung von NH4 + and K+. Die Verarmung der Schmelze an NH4 + wahrend der Kristallisation geht darauf zurück, daß NH4 + von Biotit and in einem geringen Ausmaß von K-Feldspat aufgenommen wird. Das Verhalten des Ammonium-Ions während der Anatexis wird am Peña Negra Migmatit-Komplex diskutiert. Es zeigt rich, daß große Mengen von NH4 + in diesen hochgradig metamorphen Gesteinen vorkommen, and das NH4 + während teilweiser Aufschmelzung vorzugsweise in der Restit-Fraktion angereichert wird. Diese Beziehungen gehen auf die vorzugsweise Aufnahme von NH4 + in Kali-führenden Gastmineralen zurück, and zwar in folgender Ordnung: Biotit > Muskovit > K-Feldspat.


With 5 Figures  相似文献   
23.
The δ13C of organic matter bound within the crystal lattice of foraminiferal calcite tests may provide a potential tracer of the isotopic composition of the surface water primary photosynthate. Using δ13C of the organic matter extracted from the crystal lattice and the calcite test, it is theoretically possible to estimate the paleo-surface water pCO2. We have tailored this technique initially for the subpolar planktonic foraminifera species Globigerina bulloides. Initial surface water pCO2 estimates from deep-sea core BOFS 5K (50°41.3′N, 21°51.9′W, water depth 3547 m) indicate that the northeast Atlantic Ocean may have been a greater sink for CO2 during the last glacial than during the Holocene. Greatly reduced benthic foraminifera abundances, especially phytodetritus feeders, in BOFS 5K during the last glacial indicates low surface productivity. This rules out a productivity-driven CO2 sink. The enhanced glacial CO2 sink must, therefore, have results from a southwards shift of the centre of deep water formation.  相似文献   
24.
Discussions regarding weathering in cold environments generally centre on mechanical processes and on the freeze–thaw mechanism in particular. Despite the almost ubiquitous assumption of freeze–thaw weathering, unequivocal proof of interstitial rock water actually freezing and thawing is singularly lacking. Equally, many studies have used the crossing of 0 °C, or values close to that, as the basis for determining the number of ‘freeze–thaw events’. In order to assess the weathering regime at a site in northern Canada, temperatures were collected at the surface, 1 cm and 3 cm depth for sets of paving bricks, with exposures both vertical and at 45°, orientated to the four cardinal directions. Temperature data were collected at 1 min intervals for 1 year. These data provide unequivocal proof for the occurrence of the freezing and thawing of water on and within the rock (freeze–thaw events). The freeze event is evidenced by the exotherm associated with the release of latent heat as the water actually freezes. This is thought to be the ?rst record of such events from a ?eld situation. More signi?cantly, it was found that the temperature at which freezing occurred varied signi?cantly through the year and that on occasion the 1 cm depth froze prior to the rock surface. The change in freeze temperature is thought to be due to the chemical weathering of the material (coupled with on‐going salt inputs via the melting of snowfall), which, it is shown, could occur throughout the winter despite air temperatures down to ?30 °C. This ?nding regarding chemical weathering is also considered to be highly signi?cant. A number of thermal stress events were also recorded, suggesting that rock weathering in cold regions is a synergistic combination of various chemical and mechanical weathering mechanisms. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
25.
Li/Ca ratios were measured in planktonic and benthic foraminifera from a variety of hydrographic settings to investigate the factors influencing lithium incorporation into foraminiferal tests including temperature, dissolution, pressure, and interspecies differences. Down-core measurements of planktonic (Orbulina universa, Globigerinoides ruber, and Globigerinoides sacculifer) and benthic foraminifera (calcitic Cibicides wuellerstorfi and aragonitic Hoeglandina elegans) show a systematic variation in Li/Ca with δ18O through the last glacial-interglacial transition. All species examined exhibit an increase in Li/Ca between 14 to 50% from the Holocene to the last glacial maximum. Li/Ca generally increases with decreasing temperature as seen in a latitudinal transect of planktonic O. universa and down-slope benthic species along the Bahama Bank margins. Postdepositional dissolution possibly causes a decrease in planktonic foraminiferal Li/Ca along the Sierra Leone Rise, and increased water depth causes a decrease in benthic foraminiferal Li/Ca in the deep Caribbean. However, none of these effects are sufficient to account for the observed glacial-interglacial changes. Physiological factors such as calcification rate may affect the Li/Ca content of foraminiferal calcite. The calcification rate in turn may be a function of carbonate ion concentration of ambient ocean water. This work shows that incorporation of lithium by foraminifera appears to be influenced by factors other than seawater composition and does not appear to be dominated by changes in temperature, dissolution, or pressure. We hypothesize that the consistent increase in foraminiferal Li/Ca during the last glacial maximum may be linked to changes in seawater carbonate ion concentration. Important parameters to be tested include calcification rate and foraminiferal test size and weight. If foraminiferal Li/Ca is dominantly controlled by calcification rate as a function of seawater carbonate ion concentration, then Li/Ca may act as a proxy of past atmospheric CO2.  相似文献   
26.
27.
Broadly speaking, there is, at least within geomorphic circles, a general acceptance that rocks with low albedos will warm both faster and to higher temperatures than rocks with high albedos, reflectivity influencing radiative warming. Upon this foundation are built notions of weathering in respect of the resulting thermal differences, both at the grain scale and at the scale of rock masses. Here, a series of paving bricks painted in 20 per cent reflectivity intervals from black through to white were used to monitor albedo‐influenced temperatures at a site in northern Canada in an attempt to test this premise. Temperatures were collected, for five months, for the rock surface and the base of the rock, the blocks being set within a mass of local sediment. Resulting thermal data did indeed show that the dark bricks were warmer than the white but only when their temperatures were equal to or cooler than the air temperature. As brick temperature exceeded that of the air, so the dark and light bricks moved to parity; indeed, the white bricks frequently became warmer than the dark. It is argued that this ‘negating’ of the albedo influence on heating is a result of the necessity of the bricks, both white and black, to convect heat away to the surrounding cooler air; the darker brick, being hotter, initially convects faster than the white as a product of the temperature difference between the two media. Thus, where the bricks become significantly hotter than the air, they lose energy to that air and so their respective temperatures become closer, the albedo influence being superceded by the requirement to equilibrate with the surrounding air. It is argued that this finding will have importance to our understanding of weathering in general and to our perceptions of weathering differences between different lithologies. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
28.
The processes of long‐range granitic magma transfer from mid‐ and lower crustal anatectic zones to upper crustal pluton emplacement sites remain controversial in the literature. This is partly because feeder networks that could have accommodated this large‐scale magma transport remain elusive in the field. Existing granite ascent models are based largely on numerical and theoretical studies that seek to demonstrate the viability of fracture‐controlled magma transport through dykes or self‐propagating hydrofractures. In most cases, the models present very little supporting field evidence, such as sufficiently voluminous near‐ or within‐source magma accumulations, to support their basic premises. We document large (deca‐ to hectometre‐scale), steeply dipping and largely homogeneous granite lenses in suprasolidus (~5 kbar, ~750 °C) mid‐crustal rocks in the Damara Belt in Namibia. The lenses are surrounded by and connected to shallowly dipping networks of stromatic leucogranites in the well‐layered gneisses of the deeply incised Husab Gorge. The outcrops define a four‐stage process from (i) the initial formation and growth of large, subvertical magma‐filled lenses as extension fractures developed at high angles to the subhorizontal regional extension in relatively competent wall‐rock layers. This stage is followed by (ii) the simultaneous lateral inflation and (iii) subcritical vertical growth of the lenses to a critical length that (iv) promotes fracture destabilization, buoyancy‐driven upward fracture mobilization and, consequently, vertical magma transport. These field observations are compared with existing numerical models and are used to constrain, by referring to the dimensions of the largest preserved inflated leucogranite lens, an estimate of the minimum fracture length (~100 m) and volume (~2.4 × 105 m3) required to initiate buoyancy‐driven brittle fracture propagation in this particular mid‐crustal section. The critical values and field relationships compare favourably with theoretical models of magma ascent along vertical self‐propagating hydrofractures which close at their tails during propagation. This process leaves behind subtle wake‐like structures and thin leucogranite trails that mark the path of magma ascent. Reutilization of such conduits by repeated inflation and drainage is consistent with the episodic accumulation and removal of magma from the mid‐crust and is reflected in the sheeted nature of many upper crustal granitoid plutons.  相似文献   
29.
30.
Multi-method thermochronology applied to the Peake and Denison Inliers (northern South Australia) reveals multiple low-temperature thermal events. Apatite fission track (AFT) data suggest two main time periods of basement cooling and/or reheating into AFT closure temperatures (~60–120°C); at ca 470–440 Ma and ca 340–300 Ma. We interpret the Ordovician pulse of rapid basement cooling as a result of post-orogenic cooling after the Delamerian Orogeny, followed by deformation related to the start of the Alice Springs Orogeny and orocline formation relating to the Benambran Orogeny. This is supported by a titanite U/Pb age of 479 ± 7 Ma. Our thermal history models indicate that subsequent denudation and sedimentary burial during the Devonian brought the basement rocks back to zircon U–Th–Sm/He (ZHe) closure temperatures (~200–150°C). This period was followed by a renewal of rapid cooling during the Carboniferous, likely as the result of the final pulses of the Alice Springs Orogeny, which exhumed the inlier to ambient surface temperatures. This thermal event is supported by the presence of the Mount Margaret erosion surface, which indicates that the inlier was exposed at the surface during the early Permian. During the Late Triassic–Early Jurassic, the inlier was subjected to minor reheating to AFT closure temperatures; however, the exact timing cannot be deduced from our dataset. Cretaceous apatite U–Th–Sm/He (AHe) ages coupled with the presence of contemporaneous coarse-grained terrigenous rocks suggest a temporally thermal perturbation related with shallow burial during this time, before late Cretaceous exhumation cooled the inliers back to ambient surface temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号