首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   427篇
  免费   12篇
  国内免费   8篇
测绘学   3篇
大气科学   31篇
地球物理   80篇
地质学   112篇
海洋学   64篇
天文学   113篇
综合类   1篇
自然地理   43篇
  2021年   5篇
  2020年   8篇
  2019年   8篇
  2018年   6篇
  2017年   5篇
  2016年   11篇
  2015年   11篇
  2014年   6篇
  2013年   29篇
  2012年   11篇
  2011年   13篇
  2010年   14篇
  2009年   26篇
  2008年   17篇
  2007年   17篇
  2006年   17篇
  2005年   25篇
  2004年   12篇
  2003年   12篇
  2002年   16篇
  2001年   8篇
  2000年   14篇
  1999年   6篇
  1998年   11篇
  1997年   8篇
  1996年   5篇
  1995年   4篇
  1993年   3篇
  1992年   3篇
  1989年   7篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1984年   3篇
  1983年   4篇
  1982年   7篇
  1981年   3篇
  1980年   8篇
  1978年   3篇
  1977年   10篇
  1976年   3篇
  1975年   6篇
  1974年   8篇
  1973年   3篇
  1971年   4篇
  1969年   3篇
  1954年   4篇
  1951年   2篇
  1950年   3篇
  1948年   2篇
排序方式: 共有447条查询结果,搜索用时 15 毫秒
81.
Christensen, Leif: Faststående og omlejrede Saale-morånelersaflejringer. Et eksempel fra Szdding-området, Vestjylland. Geografisk Tidsskrift 82: 91–94. Copenhagen, Dec. 1, 1982.

In situ clayey till materials on the Skovbjerg Bakkea, western Jutland can be recognized by crop-marks revealing pseudomorphs of ice-wedge polygons in orthogonal, random orthogonal and hexagonal patterns. The tills inside these polygonal patterns have high shear-strength values as measured by vane tests. Remoulded fossil solifluction deposits of till origin reveal stripes and deformed polygonal patterns in the crops. High strength as measured by vane are encountered below fossil solifluction deposits 4 meters below ground.  相似文献   
82.
Anmeldelser     
Meyer, Marlene: Settlement Patterns and Land-use in Northern Ghana—A Study of the Changes during the period 1963–1991 based on Historical Surveys and recent SPOT-images. Geografisk Tidsskrift 92:101–104. Copenhagen 1992.

A study by Hunter (1966) describes how large areas along the Red Volta River bank, have been abandoned due to river blindness. The mapping of current land-use status and settlements patterns, using multispectral SPOT-satellite images, shows how the border of settlements continue to retreat, whereas new land is being reclaimed for bush fields in the abandoned areas.  相似文献   
83.
188 new and previously published radiocarbon dates on Holocene material from Disko Bugt, central West Greenland, are presented together with relevant informations (laboratory number, place name, dated material, geografic coordinates, altitude and δ13C-value) about the dates.

In October 1990 an automatic weather station was established at the Arctic station (65 °15′N,53 °31′W), Qeqertarsuaq (Godhavn), Central West Greenland. The Station register parameters each 20 min., and the parameters have been described in an earlier paper in this journal by Nielsen et al. (1995). The present paper summarises main points of the climate during 1996.

Open system, or more correctly, hydraulic pingos, are genetically poorly understood. A continuing problem concerns their need for a perennial groundwater supply (intra- or sub-permafrost). This has to be maintained despite the existence of continuous permafrost in many areas where they are located. Recent work on Disko Island has suggested a new type of hydraulic pingo developing only in a “marsh environment”. It is argued that the marsh setting is not relevant to the formation of these features and that they are simply hydraulic pingos.

Abstract

A group of marsh initiated open system pingo remnants from the Iterdlagssûp kûgssua valley mouth, in Mellemfjord, Disko Island, Central West Greenland was described in Christiansen (1995). Gurney and Worsley (1997) state that the location of this group of pingo remnants in the Iterdlagssûp kûgssua valley mouth is of no relevance to their genesis, and that they presumably were the result of an assumed late Holocene sea level regression, causing permafrost to be established in the valley bottom. In this reply the arguments by Gurney and Worsley (1997) on the Iterdlagssûp kûgssua valley pingos are commented, and it is argued by way of sea level information, frost penetration and water supply that the special setting must indeed have caused pingo initiation and growth. Furthermore, the area has experienced a relative sea level rise during the late Holocene.  相似文献   
84.
An automatic meteorological station has been operating at the Arctic Station (69°15'N, 53°31'W) in West Greenland since 1990. This paper summarises meteorological parameters during 2002, including snow cover, ground temperatures and active layer development, and air temperatures at the Station during the last 12 years are compared to large scale trends during the last century.

A compilation of 93 sedimentation rate determinations based on 210Pb dating has been carried out for the North Sea-Baltic Sea transition area from a database containing 165 determinations carried out by Danish institutions. In the depositional parts of the area sedimentation rates generally range 25–6403 g m?2 y?1. An extreme rate of 13351 g m?2 y?1 is observed on a station in the Skagerrak. Sedimentation rates significantly increase with depth indicating that the Skagerrak and northern parts of the Kattegat as well as the deep basins in the Baltic Sea act as depocentres for fine-grained sediments. Apparently, sedimentation rates have increased in recent years.  相似文献   
85.
86.
We apply a recently developed and validated numerical model of tsunami propagation and runup to study the inundation of Resurrection Bay and the town of Seward by the 1964 Alaska tsunami. Seward was hit by both tectonic and landslide-generated tsunami waves during the $M_{\rm W}$ 9.2 1964 megathrust earthquake. The earthquake triggered a series of submarine mass failures around the fjord, which resulted in landsliding of part of the coastline into the water, along with the loss of the port facilities. These submarine mass failures generated local waves in the bay within 5?min of the beginning of strong ground motion. Recent studies estimate the total volume of underwater slide material that moved in Resurrection Bay to be about 211?million m3 (Haeussler et?al. in Submarine mass movements and their consequences, pp 269?C278, 2007). The first tectonic tsunami wave arrived in Resurrection Bay about 30?min after the main shock and was about the same height as the local landslide-generated waves. Our previous numerical study, which focused only on the local landslide-generated waves in Resurrection Bay, demonstrated that they were produced by a number of different slope failures, and estimated relative contributions of different submarine slide complexes into tsunami amplitudes (Suleimani et?al. in Pure Appl Geophys 166:131?C152, 2009). This work extends the previous study by calculating tsunami inundation in Resurrection Bay caused by the combined impact of landslide-generated waves and the tectonic tsunami, and comparing the composite inundation area with observations. To simulate landslide tsunami runup in Seward, we use a viscous slide model of Jiang and LeBlond (J Phys Oceanogr 24(3):559?C572, 1994) coupled with nonlinear shallow water equations. The input data set includes a high resolution multibeam bathymetry and LIDAR topography grid of Resurrection Bay, and an initial thickness of slide material based on pre- and post-earthquake bathymetry difference maps. For simulation of tectonic tsunami runup, we derive the 1964 coseismic deformations from detailed slip distribution in the rupture area, and use them as an initial condition for propagation of the tectonic tsunami. The numerical model employs nonlinear shallow water equations formulated for depth-averaged water fluxes, and calculates a temporal position of the shoreline using a free-surface moving boundary algorithm. We find that the calculated tsunami runup in Seward caused first by local submarine landslide-generated waves, and later by a tectonic tsunami, is in good agreement with observations of the inundation zone. The analysis of inundation caused by two different tsunami sources improves our understanding of their relative contributions, and supports tsunami risk mitigation in south-central Alaska. The record of the 1964 earthquake, tsunami, and submarine landslides, combined with the high-resolution topography and bathymetry of Resurrection Bay make it an ideal location for studying tectonic tsunamis in coastal regions susceptible to underwater landslides.  相似文献   
87.
We report results of an interdisciplinary project devoted to the 26 km‐diameter Ries crater and to the genesis of suevite. Recent laboratory analyses of “crater suevite” occurring within the central crater basin and of “outer suevite” on top of the continuous ejecta blanket, as well as data accumulated during the past 50 years, are interpreted within the boundary conditions imposed by a comprehensive new effort to model the crater formation and its ejecta deposits by computer code calculations (Artemieva et al. 2013). The properties of suevite are considered on all scales from megascopic to submicroscopic in the context of its geological setting. In a new approach, we reconstruct the minimum/maximum volumes of all allochthonous impact formations (108/116 km3), of suevite (14/22 km3), and the total volume of impact melt (4.9/8.0 km3) produced by the Ries impact event prior to erosion. These volumes are reasonably compatible with corresponding values obtained by numerical modeling. Taking all data on modal composition, texture, chemistry, and shock metamorphism of suevite, and the results of modeling into account, we arrive at a new empirical model implying five main consecutive phases of crater formation and ejecta emplacement. Numerical modeling indicates that only a very small fraction of suevite can be derived from the “primary ejecta plume,” which is possibly represented by the fine‐grained basal layer of outer suevite. The main mass of suevite was deposited from a “secondary plume” induced by an explosive reaction (“fuel‐coolant interaction”) of impact melt with water and volatile‐rich sedimentary rocks within a clast‐laden temporary melt pool. Both melt pool and plume appear to be heterogeneous in space and time. Outer suevite appears to be derived from an early formed, melt‐rich and clast‐poor plume region rich in strongly shocked components (melt ? clasts) and originating from an upper, more marginal zone of the melt pool. Crater suevite is obviously deposited from later formed, clast‐rich and melt‐poor plumes dominated by unshocked and weakly shocked clasts and derived from a deeper, central zone of the melt pool. Genetically, we distinguish between “primary suevite” which includes dike suevite, the lower sublayer of crater suevite, and possibly a basal layer of outer suevite, and “secondary suevite” represented by the massive upper sublayer of crater suevite and the main mass of outer suevite.  相似文献   
88.
Suevite and melt breccia compositions in the boreholes Enkingen and Polsingen are compared with compositions of suevites from other Ries boreholes and surface locations and discussed in terms of implications for impact breccia genesis. No significant differences in average chemical compositions for the various drill cores or surface samples are noted. Compositions of suevite and melt breccia from southern and northeastern sectors of the Ries crater do not significantly differ. This is in stark contrast to the published variations between within‐crater and out‐of‐crater suevites from northern and southern sectors of the Bosumtwi impact structure, Ghana. Locally occurring alteration overprint on drill cores—especially strong on the carbonate‐impregnated suevite specimens of the Enkingen borehole—does affect the average compositions. Overall, the composition of the analyzed impact breccias from Ries are characterized by very little macroscopically or microscopically recognized sediment‐clast component; the clast populations of suevite and impact melt breccia are dominated consistently by granitic and intermediate granitoid components. The Polsingen breccia is significantly enriched in a dioritic clast component. Overall, chemical compositions are of intermediate composition as well, with dioritic‐granodioritic silica contents, and relatively small contributions from mafic target components. Selected suevite samples from the Enkingen core have elevated Ni, Co, Cr, and Ir contents compared with previously analyzed suevites from the Ries crater, which suggest a small meteoritic component. Platinum‐group element (PGE) concentrations for some of the enriched samples indicate somewhat elevated concentrations and near‐chondritic ratios of the most immobile PGE, consistent with an extraterrestrial contribution of 0.1–0.2% chondrite‐equivalent.  相似文献   
89.
Using observations with the ALOMAR SOUSY radar near Andenes (69.3°N, 16.0°E) from 1994 until 1997 polar mesosphere summer echoes (PMSE) have been investigated in dependence on geomagnetic K indices derived at the Auroral Observatory Tromsø (69.66°N, 18.94°E). During night-time and morning hours a significant correlation between the signal-to-noise ratio (SNR) of the radar results and the geomagnetic K indices could be detected with a maximum correlation near midnight. The correlation becomes markedly smaller in the afternoon and early evening hours with a minimum near 17 UT. This diurnal variation is in reasonable agreement with riometer absorption at Ivalo (68.55°N, 27.28°E) and can be explained by the diurnal variation of ionization due to precipitating high energetic particles. Therefore, a part of the diurnal PMSE variation is caused by this particle precipitation. The variability of the solar EUV variation, however, has no significant influence on the PMSE during the observation period.  相似文献   
90.
There has, in recent years, been an increasing interest in developing nutrient load mitigation measures focussing on tile drains. To plan the location of such tile drain measures, it is important to know where in the landscape drain flow is generated and to understand the key factors governing drain flow dynamics. In the present study, we test two approaches to assess spatial patterns in drain flow generation and thereby assess the importance of including geological information. The approaches are the widely used topographical wetness index (TWI), based solely on elevation data, and hydrological models that include the subsurface geology. We set‐up an ensemble of 20 hydrological models based on 20 stochastically generated geological models to predict drain flow dynamics in the clay till Norsminde catchment in Denmark and test the results against TWI. We find that the hydrological models predict observed daily drain flow reasonably well. High drain flow volumes were found in stream valleys and in wetlands and lower drain flow volumes in the more hilly parts of the catchment. In spite of the apparent connection to the landscape, there was no statistically significant correlation between TWI and drain flow at grid scale (100 × 100 m). TWI was therefore not found to be a sufficient index on its own to assess where drain flow is generated, especially in the highlands of the catchment. The geology below 3 m was found to have a large impact on the drain flow, and correlations between sand percentage in the subsurface geology and drain flow volume were found to be statistically significant. Geological uncertainty therefore give rise to uncertainty on simulated drain flow, and this uncertainty was found to be high at the model grid scale but decreasing with increasing scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号