首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1268篇
  免费   27篇
  国内免费   1篇
测绘学   34篇
大气科学   96篇
地球物理   250篇
地质学   454篇
海洋学   131篇
天文学   233篇
综合类   2篇
自然地理   96篇
  2021年   10篇
  2020年   12篇
  2019年   13篇
  2018年   11篇
  2017年   15篇
  2016年   31篇
  2015年   24篇
  2014年   29篇
  2013年   57篇
  2012年   28篇
  2011年   71篇
  2010年   40篇
  2009年   53篇
  2008年   49篇
  2007年   50篇
  2006年   57篇
  2005年   45篇
  2004年   43篇
  2003年   39篇
  2002年   49篇
  2001年   39篇
  2000年   36篇
  1999年   21篇
  1998年   22篇
  1997年   18篇
  1996年   21篇
  1995年   18篇
  1994年   23篇
  1993年   17篇
  1992年   12篇
  1991年   21篇
  1990年   16篇
  1989年   13篇
  1988年   17篇
  1987年   17篇
  1986年   11篇
  1985年   28篇
  1984年   20篇
  1983年   11篇
  1982年   11篇
  1981年   11篇
  1979年   19篇
  1978年   8篇
  1977年   7篇
  1976年   8篇
  1974年   11篇
  1973年   11篇
  1972年   9篇
  1970年   6篇
  1967年   7篇
排序方式: 共有1296条查询结果,搜索用时 15 毫秒
61.
The Carson River Superfund Site in west-central Nevada is an area of Hg-contaminated soil, sediment, water, air, and biola resulting from the amalgamation milling of Ag-Au ores of the Comstock lode worked approximately a century ago. In order to develop an understanding of the behavior, transport, and fate of Hg at this site, a technique was developed to estimate the proportions of total, elemental, exchangeable, organic, and sulfide Hg in soils, sediments, and tailings.Results of this analysis performed on active Carson River sediments indicate that Hg is selectively dissolved out of Hg-Au amalgam particles and subsequently adsorbed to fine-grained sediments which are then deposited in downstream, low-energy reaches of the Carson River and Labontan Reservoir. In the relatively more-reducing environment of the reservoir Hg appears to be converted, in large part, to relatively-insoluble HgS.The original elemental form of Hg released to the environment is the chemical form which is still dominant in most highly-contaminated soils, sediments, and tailings. Deeper, more-reducing soil horizons, however, appear to fix a significant portion of the Hg as HgS, analogous to the Lahontan Reservoir example described above. This fixation as HgS is documented to be largely limited to higher-sulfur areas where sulfide minerals from the Comstock ores increase the total sulfur concentrations of contaminated soils, sediments, and tailings.  相似文献   
62.
63.
64.
Composition of hydrous melts in equilibrium with quartz eclogites   总被引:1,自引:0,他引:1  
Summary Compositions of the hydrous melts in equilibrium with garnet, omphacitic clinopyroxene and quartz have been investigated experimentally at 28.5 and 35 kbar. They are represented by silica-rich liquids (> 70% SiO2) with low MgO, FeO and CaO contents. The removal of ca 10–15% of the magma of this composition may be sufficient to convert quartz eclogite formed after subduction of altered MORB into a quartz-free bimineralic eclogite assemblage, which is a common type of xenoliths in kimberlites.At 28.5 kbar the solidus temperature is between 700 and 750° C in the system quartz eclogite—water, and the high pressure amphibole-out boundary lies at ca 25 kbar in accord with the previous studies.
Die Zusammensetzung wasserhältiger Schmelzen im Gleichgewicht mit Quarz-Eklogiten
Zusammenfassung Um Prozesse zu simulieren, die bei der Subduktion von Ozeanbodenbasalten durch partielle Anatexis im Stabilitätsfeld von Eklogiten ablaufen, wurde die Zusammensetzung wasserhältiger Schmelzen in Gleichgewicht mit Granat, Omphacit und Quarz bei 28.5 und 35 Kbar experimentell untersucht. Diese Schmelzen sind reich an SiO2 (> 70 Gew%) und arm an Mg0, Fe0 and CaO. Die Extraktion von ca. 10–15% derartiger Schmelzen würde genügen, um quarzführende Eklogite, die durch die Subduktion von alteriertem MORB Material entstanden sind, in quarzfreie bimineralische Eklogite umzuwandeln wie sie häufig als Xenolithe in Kimberliten beobachtet werden.Im System Quarz-Eklogit-Wasser liegt die Solidustemperatur bei 28.5 Kbar zwischen 700 und 750°C. Die obere Stabilitätsgrenze von Amphibol liegt in diesem Temperaturbereich bei ca. 25 Kbar.


With 1 Figures  相似文献   
65.
66.
67.
Predictive vegetation modeling can be used statistically to relate the distribution of vegetation across a landscape as a function of important environmental variables. Often these models are developed without considering the spatial pattern that is inherent in biogeographical data, resulting from either biotic processes or missing or misspecified environmental variables. Including spatial dependence explicitly in a predictive model can be an efficient way to improve model accuracy with the available data. In this study, model residuals were interpolated and added to model predictions, and the resulting prediction accuracies were assessed. Adding kriged residuals improved model accuracy more often than adding simulated residuals, although some alliances showed no improvement or worse accuracy when residuals were added. In general, the prediction accuracies that were not increased by adding kriged residuals were either rare in the sample or had high nonspatial model accuracy. Regression interpolation methods can be an important addition to current tools used in predictive vegetation models as they allow observations that are predicted well by environmental variables to be left alone, while adjusting over‐ and underpredicted observations based on local factors.  相似文献   
68.
Zircon, monazite and xenotime crystallized over a temperature interval of several hundred degrees at the magmatic to hydrothermal transition of the Sn and W mineralized Mole Granite. Magmatic zircon and monazite, thought to have crystallized from hydrous silicate melt, were dated by conventional U–Pb techniques at an age of 247.6 ± 0.4 and 247.7 ± 0.5 Ma, respectively. Xenotime occurring in hydrothermal quartz is found to be significantly younger at 246.2 ± 0.5 Ma and is interpreted to represent hydrothermal growth. From associated fluid inclusions it is concluded that it precipitated from a hydrothermal brine ≤ 600 °C, which is below the accepted closure temperature for U–Pb in this mineral. These data are compatible with a two-stage crystallization process: precipitation of zircon and monazite as magmatic liquidus phases in deep crustal magma followed by complete crystallization and intimately associated Sn–W mineralization after intrusion of the shallow, sill-like body of the Mole Granite. Later hydrothermal formation of monazite in a biotite–fluorite–topaz reaction rim around a mineralized vein was dated at 244.4 ± 1.4 Ma, which distinctly postdates the Mole Granite and is possibly related to a younger hidden intrusion and its hydrothermal fluid system.

Obtaining precise age data for magmatic and hydrothermal minerals of the Mole Granite is hampered by uncertainties introduced by different corrections required for multiple highly radiogenic minerals crystallising from evolved hydrous granites, including 230Th disequilibrium due to Th/U fractionation during monazite and possibly xenotime crystallization, variable Th/U ratios of the fluids from which xenotime was precipitating, elevated contents of common lead, and post-crystallization lead loss in zircon, enhanced by the fluid-saturated environment. The data imply that monazite can also survive as a liquidus phase in protracted magmatic systems over periods of 106 years. The outlined model is in agreement with prominent chemical core-rim variation of the zircon.  相似文献   

69.
Metallogenic provinces in Europe range in age from the Archaean to the Neogene. Deposit types include porphyry copper and epithermal Cu–Au, volcanic-hosted massive sulphide (VMS), orogenic gold, Fe-oxide–Cu–Au, anorthosite Fe–Ti-oxide and sediment-hosted base-metal deposits. Most of them formed during short-lived magmatic events in a wide range of tectonic settings; many can be related to specific tectonic processes such as subduction, hinge retreat, accretion of island arcs, continental collision, lithosphere delamination or slab tear. In contrast, most sediment-hosted deposits in Europe evolved in extensional, continental settings over significant periods of time. In Europe, as elsewhere, ore formation is an integral part of the geodynamic evolution of the Earth's crust and mantle. Many tectonic settings create conditions conducive to the generation of water-rich magma, but the generation of ore deposits appears to be restricted to locations and short periods of change in temperature and stress, imposed by transitory plate motions. Crustal influence is evident in the strong structural controls on the location and morphology of many ore deposits in Europe. Crustal-scale fault–fracture systems, many involving strike-slip elements, have provided the fabric for major plumbing systems. Rapid uplift, as in metamorphic core complexes, and hydraulic fracturing can generate or focus magmatic–hydrothermal fluid flow that may be active for time spans significantly less than a million years. Once a hydrologically stable flow is established, ore formation is strongly dependent on the steep temperature and pressure gradients experienced by the fluid, particularly within the upper crust. In Europe, significant fracture porosity deep in the crystalline basement (1%) is not only important for magmatic–hydrothermal systems, but allows brines to circulate down through sedimentary basins and then episodically upward, expelled seismically to produce sediment-hosted base-metal deposits and Kupferschiefer copper deposits. Emerging research, stimulated by GEODE, can improve the predicting power of numerical simulations of ore-forming processes and help discover the presence of orebodies beneath barren overburden.  相似文献   
70.
Silicate and sulfide melt inclusions from the andesitic Farallón Negro Volcanic Complex in NW Argentina were analyzed by laser ablation ICPMS to track the behavior of Cu and Au during magma evolution, and to identify the processes in the source of fluids responsible for porphyry-Cu-Au mineralization at the 600 Mt Bajo de la Alumbrera deposit. The combination of silicate and sulfide melt inclusion data with previously published geological and geochemical information indicates that the source of ore metals and water was a mantle-derived mafic magma that contained approximately 6 wt.% H2O and 200 ppm Cu. This magma and a rhyodacitic magma mixed in an upper-crustal magma chamber, feeding the volcanic systems and associated subvolcanic intrusions over 2.6 million years. Generation of the ore fluid from this magma occurred towards the end of this protracted evolution and probably involved six important steps: (1) Generation of a sulfide melt upon magma mixing in some parts of the magma chamber. (2) Partitioning of Cu and Au into the sulfide melt (enrichment factor of 10,000 for Cu) leading to Cu and Au concentrations of several wt.% or ppm, respectively. (3) A change in the tectonic regime from local extension to compression at the end of protracted volcanism. (4) Intrusion of a dacitic magma stock from the upper part of the layered magma chamber. (5) Volatile exsolution and resorption of the sulfide melt from the lower and more mafic parts of the magma chamber, generating a fluid with a Cu/Au ratio equal to that of the precursor sulfide. (6) Focused fluid transport and precipitation of the two metals in the porphyry, yielding an ore body containing Au and Cu in the proportions dictated by the magmatic fluid source. The Cu/S ratio in the sulfide melt inclusions requires that approximately 4,000 ppm sulfur is extracted from the andesitic magma upon mixing. This exceeds the solubility of sulfide or sulfate in either of the silicate melts and implies an additional source for S. The extra sulfur could be added in the form of anhydrite phenocrysts present in the rhyodacitic magma. It appears, thus, that unusually sulfur-rich, not Cu-rich magmas are the key to the formation of porphyry-type ore deposits. Our observations imply that dacitic intrusions hosting the porphyry–Cu–Au mineralization are not representative of the magma from which the ore-fluid exsolved. The source of the ore fluid is the underlying more mafic magma, and unaltered andesitic dikes emplaced immediately after ore formation are more likely to represent the magma from which the fluids were generated. At Alumbrera, these andesitic dikes carry relicts of the sulfide melt as inclusions in amphibole. Sulfide inclusions in similar dykes of other, less explored magmatic complexes may be used to predict the Au/Cu ratio of potential ore-forming fluids and the expected metal ratio in any undiscovered porphyry deposit.Editorial handling: B. Lehmann  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号