首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   804篇
  免费   21篇
  国内免费   20篇
测绘学   7篇
大气科学   45篇
地球物理   184篇
地质学   201篇
海洋学   237篇
天文学   124篇
综合类   4篇
自然地理   43篇
  2021年   6篇
  2020年   7篇
  2019年   7篇
  2018年   12篇
  2017年   14篇
  2016年   21篇
  2015年   11篇
  2014年   18篇
  2013年   28篇
  2012年   25篇
  2011年   35篇
  2010年   36篇
  2009年   40篇
  2008年   36篇
  2007年   44篇
  2006年   52篇
  2005年   41篇
  2004年   57篇
  2003年   30篇
  2002年   23篇
  2001年   27篇
  2000年   17篇
  1999年   10篇
  1998年   23篇
  1997年   11篇
  1996年   17篇
  1995年   14篇
  1994年   12篇
  1993年   6篇
  1992年   8篇
  1991年   8篇
  1990年   12篇
  1989年   7篇
  1988年   12篇
  1987年   8篇
  1986年   8篇
  1985年   8篇
  1984年   20篇
  1983年   13篇
  1982年   8篇
  1981年   5篇
  1980年   4篇
  1979年   8篇
  1978年   8篇
  1977年   6篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   7篇
  1971年   2篇
排序方式: 共有845条查询结果,搜索用时 15 毫秒
841.
U–Pb zircon geochronology of two Permo-Triassic granites (samples OT-52 and OT-272 with ages of 229 ± 8 Ma and 256 ± 2 Ma, respectively) in the Unazuki area, Hida Metamorphic Belt, southwest Japan, revealed the presence of Eoarchean to Paleoproterozoic inheritance. Inheritance is consistent with both samples showing low zircon saturation temperatures for their bulk compositions. In OT-52, dark in CL, low Th/U zircon domains have a mean 207Pb/206Pb age of 1940 ± 17 Ma, which is consistent with an age of 1937 ± 6 Ma for anatexis in the Precambrian Busan gneiss complex in Korea. Eoarchaean inherited zircons with 207Pb/206Pb ages from ca. 3750 to 3550 Ma are common in OT-272 but are few in OT-52, suggesting a source from rocks with affinities to those in the Anshan area in the northeast China part of the North China Craton. On the other hand, a Hida Metamorphic Belt metasedimentary gneiss into which the granites were intruded contains ca. 1840, 1130, 580, 360, 285 and 250 Ma zircons (Sano et al., 2000). These ages suggest that the Unazuki Mesozoic granites did not originate from proximal Hida Metamorphic Complex rocks, but instead from unrelated rocks obscured at depth. The predominance of Eoarchean to Paleoproterozoic age components, and the marked lack of 900–700 Ma components suggest that the source was the (extended?) fringe of the North China Craton, rather than from Yangtze Craton crust. The Mesozoic evolution of Japan and its linkages to northeast Asia are discussed in the context of these results.  相似文献   
842.
Field studies integrated with cathodoluminescence petrography and SHRIMP U–Pb dating of zircons from >150 orthogneisses and metatonalites from the Eoarchaean Itsaq Gneiss Complex (southern West Greenland) shows that only a minority contain ≥3840 Ma zircons, whereas the majority carry only younger ones. Rocks containing ≥3840 Ma zircons vary from very rare single-phase metatonalites to more common complexly banded tonalitic migmatites. The former metatonalites have simple oscillatory-zoned ≥3840 Ma zircon with limited recrystallisation and overgrowth, whereas the more common migmatites have much more complicated zircon populations with both ≥3840 Ma and 3650–3600 Ma oscillatory-zoned zircon, more extensive recrystallisation and widespread complex core-rim multiple growth relationships.  相似文献   
843.
This paper describes the potential applicability of a hydrological–geotechnical modeling system using satellite-based rainfall estimates for a shallow landslide prediction system. The physically based distributed model has been developed by integrating a grid-based distributed kinematic wave rainfall-runoff model with an infinite slope stability approach. The model was forced by the satellite-based near real-time half-hourly CMORPH global rainfall product prepared by NOAA-CPC. The method combines the following two model outputs necessary for identifying where and when shallow landslides may potentially occur in the catchment: (1) the time-invariant spatial distribution of areas susceptible to slope instability map, for which the river catchment is divided into stability classes according to the critical relative soil saturation; this output is designed to portray the effect of quasi-static land surface variables and soil strength properties on slope instability and (2) a produced map linked with spatiotemporally varying hydrologic properties to provide a time-varying estimate of susceptibility to slope movement in response to rainfall. The proposed hydrological model predicts the dynamic of soil saturation in each grid element. The stored water in each grid element is then used for updating the relative soil saturation and analyzing the slope stability. A grid of slope is defined to be unstable when the relative soil saturation becomes higher than the critical level and is the basis for issuing a shallow landslide warning. The method was applied to past landslides in the upper Citarum River catchment (2,310 km2), Indonesia; the resulting time-invariant landslide susceptibility map shows good agreement with the spatial patterns of documented historical landslides (1985–2008). Application of the model to two recent shallow landslides shows that the model can successfully predict the effect of rainfall movement and intensity on the spatiotemporal dynamic of hydrological variables that trigger shallow landslides. Several hours before the landslides, the model predicted unstable conditions in some grids over and near the grids at which the actual shallow landslides occurred. Overall, the results demonstrate the potential applicability of the modeling system for shallow landslide disaster predictions and warnings.  相似文献   
844.
An early warning system has been developed to predict rainfall-induced shallow landslides over Java Island, Indonesia. The prototyped early warning system integrates three major components: (1) a susceptibility mapping and hotspot identification component based on a land surface geospatial database (topographical information, maps of soil properties, and local landslide inventory, etc.); (2) a satellite-based precipitation monitoring system () and a precipitation forecasting model (i.e., Weather Research Forecast); and (3) a physically based, rainfall-induced landslide prediction model SLIDE. The system utilizes the modified physical model to calculate a factor of safety that accounts for the contribution of rainfall infiltration and partial saturation to the shear strength of the soil in topographically complex terrains. In use, the land-surface “where” information will be integrated with the “when” rainfall triggers by the landslide prediction model to predict potential slope failures as a function of time and location. In this system, geomorphologic data are primarily based on 30-m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data, digital elevation model (DEM), and 1-km soil maps. Precipitation forcing comes from both satellite-based, real-time National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM), and Weather Research Forecasting (WRF) model forecasts. The system’s prediction performance has been evaluated using a local landslide inventory, and results show that the system successfully predicted landslides in correspondence to the time of occurrence of the real landslide events. Integration of spatially distributed remote sensing precipitation products and in-situ datasets in this prototype system enables us to further develop a regional, early warning tool in the future for predicting rainfall-induced landslides in Indonesia.  相似文献   
845.
Torque-free motion of a rigid body is integrable and its solution is expressed in terms of elliptic functions and elliptic integrals. The conventional analytical expression of the solution, however, is complicated and not suitable for hand-calculation. Recently the rotational motions of small celestial bodies in the solar system are frequently investigated by numerically integrating the equations of motion instead of using the analytical solution, since the numerical evaluation of the analytical and exact solution is a little bit difficult. As the observational accuracy of the rotational motions of the small bodies in the solar system is quite low, what we need for the reduction of these observations are rough estimates of the period of Eulerian motion ( or the free precession period) and the amplitudes of the main periodic terms. Here we give simple analytical expansions of torque-free motions for short- and long-axis modes, which are correct up to the second-order of a small parameter. These expressions include only trigonometric functions and are easily evaluated by hand calculation for estimates of the essential quantities from which we can determine a global rotational motion of the torque-free motion. They can also be used as the zero-th order solution in a perturbation method, when the motion is perturbed by external torques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号