首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580篇
  免费   8篇
  国内免费   7篇
测绘学   3篇
大气科学   32篇
地球物理   140篇
地质学   143篇
海洋学   107篇
天文学   128篇
综合类   5篇
自然地理   37篇
  2021年   6篇
  2020年   4篇
  2019年   13篇
  2018年   11篇
  2017年   14篇
  2016年   15篇
  2015年   8篇
  2014年   21篇
  2013年   21篇
  2012年   18篇
  2011年   18篇
  2010年   21篇
  2009年   31篇
  2008年   28篇
  2007年   37篇
  2006年   29篇
  2005年   19篇
  2004年   25篇
  2003年   18篇
  2002年   23篇
  2001年   20篇
  2000年   9篇
  1999年   5篇
  1998年   5篇
  1997年   9篇
  1996年   17篇
  1995年   11篇
  1994年   6篇
  1993年   12篇
  1992年   8篇
  1991年   3篇
  1990年   4篇
  1988年   7篇
  1987年   2篇
  1986年   4篇
  1985年   11篇
  1984年   8篇
  1983年   10篇
  1982年   5篇
  1981年   5篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   8篇
  1975年   8篇
  1973年   8篇
  1972年   5篇
  1971年   3篇
  1965年   1篇
排序方式: 共有595条查询结果,搜索用时 687 毫秒
121.
122.
123.
We present the set-up and the results of a supercritical radiative shock experiment performed with the LULI nanosecond laser facility. Using specific designed targets filled with xenon gaz at low pressure, the propagation of a strong shock with a radiative precursor is evidenced. The main measured quantities related to the shock (electronic density, propagation velocities, temperature, radial dimension) are presented and compared with various numerical simulations.  相似文献   
124.
The dependence of coupling constants in a coupled oscillator model is examined with simplified methods. The Lyapunov exponents are preliminary introduced for the model. The behaviors of oscillator model are examined in a parameter plane. So-called the Arnold's tongues for phase-locking states are observed in fractal patterns.  相似文献   
125.
The Yonaguni Knoll IV hydrothermal vent field (24°51′N, 122°42′E) is located at water depths of 1370–1385 m near the western edge of the southern Okinawa Trough. During the YK03–05 and YK04–05 expeditions using the submersible Shinkai 6500, both hydrothermal precipitates (sulfide/sulfate/carbonate) and high temperature fluids (Tmax = 328°C) presently venting from chimney‐mound structures were extensively sampled. The collected venting fluids had a wide range of chemistry (Cl concentration 376–635 mmol kg?1), which is considered as evidence for sub‐seafloor phase separation. While the Cl‐enriched smoky black fluids were venting from two adjacent chimney‐mound structures in the hydrothermal center, the clear transparent fluids sometimes containing CO2 droplet were found in the peripheral area of the field. This distribution pattern could be explained by migration of the vapor‐rich hydrothermal fluid within a porous sediment layer after the sub‐seafloor phase separation. The collected hydrothermal precipitates demonstrated a diverse range of mineralization, which can be classified into five groups: (i) anhydrite‐rich chimneys, immature precipitates including sulfide disseminations in anhydrite; (ii) massive Zn‐Pb‐Cu sulfides, consisting of sphalerite, wurtzite, galena, chalcopyrite, pyrite, and marcasite; (iii) Ba‐As chimneys, composed of barite with sulfide disseminations, sometimes associated with realgar and orpiment overgrowth; (iv) Mn‐rich chimneys, consisting of carbonates (calcite and magnesite) and sulfides (sphalerite, galena, chalcopyrite, alabandite, and minor amount of tennantite and enargite); and (v) pavement, silicified sediment including abundant native sulfur or barite. Sulfide/sulfate mineralization (groups i–iii) was found in the chimney–mound structure associated with vapor‐loss (Cl‐enriched) fluid venting. In contrast, the sulfide/carbonate mineralization (group iv) was specifically found in the chimneys where vapor‐rich (Cl‐depleted) fluid venting is expected, and the pavement (group v) was associated with diffusive venting from the seafloor sediment. This correspondence strongly suggests that the subseafloor phase separation plays an important role in the diverse range of mineralization in the Yonaguni IV field. The observed sulfide mineral assemblage was consistent with the sulfur fugacity calculated from the FeS content in sphalerite/wurtzite and the fluid temperature for each site, which suggests that the shift of the sulfur fugacity due to participation of volatile species during phase separation is an important factor to induce diverse mineralization. In contrast, carbonate mineralization is attributed to the significant mixing of vapor‐rich hydrothermal fluid and seawater. A submarine hydrothermal system within a back‐arc basin in the continental margin may be considered as developed in a geologic setting favorable to a diverse range of mineralization, where relatively shallow water depth induces sub‐seafloor phase separation of hydrothermal fluid, and sediment accumulation could enhance migration of the vapor‐rich hydrothermal fluid.  相似文献   
126.
The Nidar ophiolite complex is exposed within the Indus suture zone in eastern Ladakh, India. The suture zone is considered to represent remnant Neo-Tethyan Ocean that closed via subduction as the Indian plate moved northward with respect to the Asian plate. The two plates ultimately collided during the Middle Eocene. The Nidar ophiolite complex comprises a sequence of ultra-mafic rocks at the base, gabbroic rocks in the middle and volcano-sedimentary assemblage on the top. Earlier studies considered the Nidar ophiolite complex to represent an oceanic floor sequence based on lithological assemblage. However, present study, based on new mineral and whole rock geochemical and isotopic data (on bulk rocks and mineral separates) indicate their generation and emplacement in an intra-oceanic subduction environment. The plutonic and volcanic rocks have nearly flat to slightly depleted rare earth element (REE) patterns. The gabbroic rocks, in particular, show strong positive Sr and Eu anomalies in their REE and spidergram patterns, probably indicating plagioclase accumulation. Depletion in high field strength elements (HFSE) in the spidergram patterns may be related to stabilization of phases retaining the HFSE in the subducting slab and / or fractional crystallization of titano-magnetite phases. The high radiogenic Nd- and low radiogenic Sr-isotopic ratios for these rocks exclude any influence of continental material in their genesis, implying an intra-oceanic environment.

Nine point mineral–whole rock Sm–Nd isochron corresponds to an age of 140 ± 32 Ma with an initial 143Nd/144Nd of 0.513835 ± 0.000053 (ENd t = + 7.4). This age is consistent with the precise Early Cretaceous age of Hauterivian (132 ± 2 to 127 ± 1.6 Ma) to Aptian (121 ± 1.4 to 112 ±1.1 Ma) for the overlying volcano-sedimentary (radiolarian bearing chert) sequences based on well-preserved radiolarian fossils (Kojima, S., Ahmad, T., Tanaka, T., Bagati, T.N., Mishra, M., Kumar, R. Islam, R., Khanna, P.P., 2001. Early Cretaceous radiolarians from the Indus suture zone, Ladakh, northern India. In: News of Osaka Micropaleontologists (NOM), Spec. Vol., 12, 257–270.) and cooling ages of 110–130 Ma based on 39Ar/40Ar for Nidar–Spontang ophiolitic rocks (Mahéo, G., Berttrand, H., Guillot, S., Villa, I. M., Keller, F., Capiez, P., 2004. The South Ladakh Ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic arc origin with implications for the closure of the Neo-Tethys. Chem. Geol., 203, 273–303.). As these gabbroic and volcanic rocks are interpreted to be arc related, the new Sm–Nd age data may indicate that intra-ocean subduction in the Neo-Tethyan ocean may have started much before  140 ± 32 Ma as this date is interpreted as the age of crystallization of the arc magma. Present and published age data on the arc magmatic rocks from the Indus suture zone may collectively indicate episodic magmatism with increasing maturity of the arc from more basic (during ~ 140 ± 32 Ma) when the arc was immature through intermediate (andesitic/granodioritic) at ~ 100 Ma to more felsic (rhyolitic/dioritic) magmatism at ~ 50–45 Ma, when the Indian and the Asian plates collided.  相似文献   

127.
The seasonal intensive sampling of gases and particulate matter in ambient air was conducted at the site established in urban area of Japan to study the seasonal difference of the temporal variation of gases and particulate matter concentrations in urban atmosphere as well as to illustrate the different transport regimes that impacts air pollutants. The sample was collected by the four-stage filter-pack method with 6-h interval for one week in four seasons (spring, summer, autumn and winter). The trans-boundary transport of air pollutants with high concentration was characteristically observed in the spring sampling. On the other hand, we could successfully detect the in-country transports of air pollutants in the summer sampling. Four-season’s intensive survey considered, we could show the characteristic transport of air pollutants to provide the episodic high concentration for ambient air in the urban area of Japan, and successfully illustrate the seasonal-dependent transport regimes to impact on air pollutants.  相似文献   
128.
A brief review was made of storm runoff processes and the mechanisms of its generation in relation to subsurface water behaviors in a small forested drainage basin located in the western suburbs of Tokyo, Japan. The results of field investigations showed that the main source of storm runoff was groundwater flow and that the rapid and large amounts of groundwater discharge during a storm event could not be explained solely by the traditional concept of Darcian matrix flow. Several mechanisms such as pipe flow, air pressure effect, and capillary barrier effect were recognized that would induce a rapid response of groundwater to storm events depending on differences in local hydrologic conditions. All of these mechanisms were chiefly attributed to inhomogeneities of the soil deposits. The importance of dynamic behaviors of subsurface water during a storm event was emphasized in considering the mechanism of storm runoff generation.  相似文献   
129.
We present new high temperature elasticity data on two grossular garnet specimens. One specimen is single-crystal, of nearly endmember grossular, the other is polycrystalline with about 22% molar andradite. Our data extend the high temperature regime for which any garnet elasticity data are available from 1000 to 1350 K and the compositional range of temperature data to near endmember grossular. We also present new data on the thermal expansivity of calcium-rich garnet. We find virtually no discernable differences in the temperatureT derivatives at ambient conditions of the isotropic bulkK S and shearμ moduli when comparing our results between these two specimens. These calcium-rich garnets have the lowest values of ¦(?K S /?T) P ¦ = (1.47,1.49) x 10-2GPa/K, and among the highest values of ¦(?μ/?T) P ¦ = 1.25 x 10-2GPa/K, when compared with other garnets. Small, but measurable, nonlinear temperature dependences of most of the elastic moduli are observed. Several dimensionless parameters are computed with the new data and used to illustrate the effects of different assumptions on elastic equations of state extra-polated to high temperatures. We discuss how dimensionless parameters and other systematic considerations can be useful in estimating the temperature dependence of some properties of garnet phases for which temperature data are not yet available. While we believe it is premature to quantitatively predict the temperature variation ofK S andμ for majorite garnets, our results have bearing on the amount of diopside required to explain the shear velocity gradients in Earth's transition zone.  相似文献   
130.
Fine particles of various chemical substances—carbon, iron, iron oxide and silica—which are expected to exist in interstellar space are prepared in argon gas. The size, shape, and crystal structure of the powder particles are studied by electron microscopy and electron diffraction, and may have some bearing on models of comets and of the solar nebula.The largest size we have obtained is about 0.1 μm and the smallest about 40Å. Generally the size becomes smaller for lower temperature and also for lower pressure. This tendency is discussed in connection with nucleation theories. Except for iron and iron oxide the powder particles have no crystal structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号