首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25244篇
  免费   432篇
  国内免费   312篇
测绘学   716篇
大气科学   1790篇
地球物理   4854篇
地质学   8700篇
海洋学   2289篇
天文学   6282篇
综合类   51篇
自然地理   1306篇
  2021年   199篇
  2020年   237篇
  2019年   297篇
  2018年   605篇
  2017年   586篇
  2016年   724篇
  2015年   408篇
  2014年   695篇
  2013年   1299篇
  2012年   795篇
  2011年   1037篇
  2010年   954篇
  2009年   1253篇
  2008年   1127篇
  2007年   1151篇
  2006年   1124篇
  2005年   838篇
  2004年   835篇
  2003年   761篇
  2002年   716篇
  2001年   615篇
  2000年   637篇
  1999年   562篇
  1998年   553篇
  1997年   523篇
  1996年   395篇
  1995年   394篇
  1994年   408篇
  1993年   313篇
  1992年   308篇
  1991年   258篇
  1990年   310篇
  1989年   270篇
  1988年   254篇
  1987年   275篇
  1986年   228篇
  1985年   310篇
  1984年   334篇
  1983年   323篇
  1982年   310篇
  1981年   248篇
  1980年   266篇
  1979年   215篇
  1978年   205篇
  1977年   215篇
  1976年   177篇
  1975年   190篇
  1974年   176篇
  1973年   166篇
  1972年   114篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
992.
Transient aragonite seas occurred in the early Cambrian but several models suggest the late Cambrian was a time of calcite seas. Here, evidence is presented from the Andam Group, Huqf High, Oman (Gondwana) that suggests a transient Furongian (late Cambrian) aragonite sea, characterized by the precipitation of aragonite and high‐Mg calcite ooids and aragonite isopachous, fibrous, cements. Stable carbon isotope data suggest that precipitation occurred just before and during the SPICE (Steptoean Positive Carbonate Isotope Excursion). Aragonite and high‐Mg calcite precipitation can be accounted for if mMg:Ca ratios were around 1.2 given the very high atmospheric CO2 at that time and if precipitation occurred in warm waters associated with the SPICE. This, together with reported occurrences of early Furongian aragonite ooids from various locations in North America (Laurentia), suggests that aragonite and high‐Mg calcite precipitation from seawater may have been more than just a local phenomenon.  相似文献   
993.
994.
We report U–Pb zircon ages of c. 700–550 Ma, 262–220 Ma, 47–38 Ma and 15–14 Ma from amphibolites on Naxos Island in the Aegean extensional province of Greece. The zircon has complex internal structures. Based on cathodoluminescence response, zoning and crosscutting relationships a minimum of four zircon growth stages are identified: inherited core, magmatic core, inner metamorphic (?) rim and an outer metamorphic rim. Trace element compositions of the amphibolites suggest igneous differentiation and crustal assimilation. Zircon solubility as a function of saturation temperatures, Zr content and melt composition indicates that the zircon did not originally crystallize in the mafic bodies but was inherited from felsic precursor rocks, and subsequently assimilated into the mafic intrusives during emplacement. Zircon inheritance is corroborated by the complex, xenocrystic nature of the zircon in one sample. Ages of c. 700–550 Ma and 262–220 Ma are assigned to inherited zircon. Available geochemical data suggest that the 15–14 Ma metamorphic rims grew in situ in the amphibolites, corresponding to a high‐grade metamorphic event at this time. However, the geochemical data cannot conclusively establish if the c. 40 Ma zircon rims also grew in situ, or whether they were inherited along with the xenocrystic cores. Two scenarios for emplacement of the mafic intrusives are discussed: (i) Intrusion during late‐Triassic to Jurassic ocean basin development of the Aegean realm, in which case the 40 Ma zircon rims would have grown in situ, and (ii) emplacement in the Miocene as a result mafic underplating during large‐scale extension. In this case, only the 15–14 Ma metamorphic outer rims would have formed in situ in the amphibolitic host rocks.  相似文献   
995.
New activity–composition (ax) relations for minerals commonly occurring in metapelites are presented for use with the internally consistent thermodynamic dataset of Holland & Powell ( 2011 , Journal of Metamorphic Geology, 29 , 333–383). The ax relations include a broader consideration of Fe2O3 in minerals, changes to the formalism of several phases and order–disorder in all ferromagnesian minerals where Fe–Mg mixing occurs on multiple sites. The ax relations for chlorite, biotite, garnet, chloritoid, staurolite, cordierite, orthopyroxene, muscovite, paragonite and margarite have been substantially reparameterized using the approach outlined in the companion paper in this issue. For the first time, the entire set of ax relations for the common ferromagnesian minerals in metapelitic rocks is parameterized simultaneously, with attention paid to ensuring that they can be used together to calculate phase diagrams of geologically appropriate topology. The ax relations developed are for use in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCKFMASHTO) system for both subsolidus and suprasolidus conditions. Petrogenetic grids in KFMASH and KFMASHTO are similar in topology to those produced with earlier end‐member datasets and ax relations, but with some notable differences. In particular, in subsolidus equilibria, the FeO/(FeO + MgO) of garnet is now greater than in coexisting staurolite, bringing a number of key staurolite‐bearing equilibria into better agreement with inferences from field and petrographic observations. Furthermore, the addition of Fe3+ and Ti to a number of silicate phases allows more plausible equilibria to be calculated in relevant systems. Pseudosections calculated with the new ax relations are also topologically similar to equivalent diagrams using earlier ax relations, although with many low variance fields shifting in PT space to somewhat lower pressure conditions.  相似文献   
996.
997.
998.
999.
1000.
Incipient charnockites have been widely used as evidence for the infiltration of CO2‐rich fluids driving dehydration of the lower crust. Rocks exposed at Kakkod quarry in the Trivandrum Block of southern India allow for a thorough investigation of the metamorphic evolution by preserving not only orthopyroxene‐bearing charnockite patches in a host garnet–biotite felsic gneiss, but also layers of garnet–sillimanite metapelite gneiss. Thermodynamic phase equilibria modelling of all three bulk compositions indicates consistent peak‐metamorphic conditions of 830–925 °C and 6–9 kbar with retrograde evolution involving suprasolidus decompression at high temperature. These models suggest that orthopyroxene was most likely stabilized close to the metamorphic peak as a result of small compositional heterogeneities in the host garnet–biotite gneiss. There is insufficient evidence to determine whether the heterogeneities were inherited from the protolith or introduced during syn‐metamorphic fluid flow. U–Pb geochronology of monazite and zircon from all three rock types constrains the peak of metamorphism and orthopyroxene growth to have occurred between the onset of high‐grade metamorphism at c. 590 Ma and the onset of melt crystallization at c. 540 Ma. The majority of metamorphic zircon growth occurred during protracted melt crystallization between c. 540 and 510 Ma. Melt crystallization was followed by the influx of aqueous, alkali‐rich fluids likely derived from melts crystallizing at depth. This late fluid flow led to retrogression of orthopyroxene, the observed outcrop pattern and to the textural and isotopic modification of monazite grains at c. 525–490 Ma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号