首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   10篇
  国内免费   9篇
测绘学   7篇
大气科学   18篇
地球物理   63篇
地质学   145篇
海洋学   15篇
天文学   54篇
综合类   2篇
自然地理   25篇
  2021年   4篇
  2020年   3篇
  2019年   8篇
  2018年   6篇
  2017年   4篇
  2016年   8篇
  2015年   8篇
  2014年   16篇
  2013年   9篇
  2012年   10篇
  2011年   7篇
  2010年   9篇
  2009年   15篇
  2008年   13篇
  2007年   10篇
  2006年   7篇
  2005年   7篇
  2004年   16篇
  2003年   10篇
  2002年   8篇
  2001年   11篇
  2000年   4篇
  1999年   9篇
  1998年   9篇
  1997年   5篇
  1996年   6篇
  1995年   4篇
  1994年   7篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1989年   3篇
  1987年   7篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   6篇
  1981年   8篇
  1980年   9篇
  1979年   4篇
  1978年   7篇
  1977年   2篇
  1976年   4篇
  1974年   3篇
  1973年   3篇
  1972年   1篇
  1971年   3篇
  1969年   3篇
  1968年   1篇
排序方式: 共有329条查询结果,搜索用时 253 毫秒
311.
The chemical potential of oxygen (µO2) in equilibrium with magnesiowüstite solid solution (Mg, Fe)O and metallic Fe has been determined by gas-mixing experiments at 1,473 K supplemented by solid-cell EMF experiments at lower temperatures. The results give:
where IW refers to the Fe-"FeO" equilibrium. The previous work of Srecec et al. (1987) and Wiser and Wood (1991) agree well with this equation, as does that of Hahn and Muan (1962) when their reported compositions are corrected to a new calibration curve for lattice parameter vs. composition. The amount of Fe3+ in the magnesiowüstite solid solution in equilibrium with Fe metal was determined by Mössbauer spectroscopy on selected samples. These data were combined with literature data from gravimetric studies and fitted to a semi-empirical equation:
These results were then used to reassess the activity-composition relations in (Mg, Fe)2SiO4 olivine solid solutions at 1,400 K, from the partitioning of Mg and Fe2+ between olivine and magnesiowüstite in equilibrium with metallic Fe experimentally determined by Wiser and Wood (1991). The olivine solid solution is constrained to be nearly symmetric with , with a probable uncertainty of less than ±0.5 kJ/mol (one standard deviation). The results also provide a useful constraint on the free energy of formation of Mg2SiO4.Editorial responsibility: B. Collins  相似文献   
312.
Are the remains of the Earth's earliest life now to be found in the hostile wilderness of Greenland?  相似文献   
313.
John Farey was a pioneer British geologist whose work has been too long overlooked. His only major geological publication was concealed in what appears to be a local report on the agriculture and minerals of Derbyshire, commissioned by the Board of Agriculture and published in three volumes between 1811 and 1817. Farey also published an extraordinary amount in periodicals and prepared a remarkable series of geological maps and cross-sections which were never published, although a number of hand-drawn copies circulated and undoubtedly influenced the rise of stratigraphical geology.  相似文献   
314.
315.
We compare high-resolution infrared observations of the CO 2–0 bands in the 2.297–2.310 μm region of M dwarfs and one L dwarf with theoretical expectations. We find a good match between the observational and synthetic spectra throughout the 2000–3500 K temperature regime investigated. None the less, for the 2500–3500 K temperature range, the temperatures that we derive from synthetic spectral fits are higher than expected from more empirical methods by several hundred kelvin. In order to reconcile our findings with the empirical temperature scale, it is necessary to invoke warming of the model atmosphere used to construct the synthetic spectra. We consider that the most likely reason for the back-warming is missing high-temperature opacity due to water vapour. We compare the water vapour opacity of the Partridge–Schwenke line list used for the model atmosphere with the output from a preliminary calculation by Barber & Tennyson. While the Partridge–Schwenke line list is a reasonable spectroscopic match for the new line list at 2000 K, by 4000 K it is missing around 25 per cent of the water vapour opacity. We thus consider that the offset between empirical and synthetic temperature scales is explained by the lack of hot water vapour used for computation of the synthetic spectra. For our coolest objects with temperatures below 2500 K, we find best fits when using synthetic spectra which include dust emission. Our spectra also allow us to constrain the rotational velocities of our sources, and these velocities are consistent with the broad trend of rotational velocities increasing from M to L.  相似文献   
316.
317.
The central zone of the large Miocene tiavnica stratovolcano in the Western Carpathians hosts epithermal Au mineralization of intermediate-sulfidation type, located at deep levels of the historic Rozália base-metal mine at Banská Hodrua. The Au mineralization occurs as subhorizontal veins at the base of pre-caldera andesites, close to the roof of a subvolcanic granodiorite intrusion. The veins are dismembered by a set of quartz–diorite porphyry sills and displaced by the younger, steeply dipping, Rozália base-metal vein, and parallel structures. The base-metal vein structures are related to resurgent horst uplift in the caldera center. The Au mineralization formed during two stages. Based on fluid inclusion evidence, both stages formed from fluids of low salinity (0–3 wt% NaCl eq.), which underwent extensive boiling at moderate temperatures (280–330°C). Variable pressure conditions (39–95 bars, neglecting the effect of CO2) indicate continual opening of the system and a transition from suprahydrostatic towards hydrodynamic conditions at shallow depths (~550 m). The fluid inclusions of the Rozália base-metal vein show homogenization temperature peaks at ~285 and 187°C and salinities between 1 and 4 wt% NaCl eq. Precipitation of Au is considered to be the result of prolonged boiling of fluids and associated decrease in Au solubility. Oxygen and hydrogen isotope data for quartz and carbonate from the Au veins show a relatively homogeneous fluid composition (–2.7 to 1.118O, –78 to –62D). The combined 18Ofluid and Dfluid values suggest a mixed character of fluids, falling between the fields of typical magmatic and meteoric water influenced by 18Ofluid shift due to fluid–rock isotopic exchange. End stages of open-system boiling and fractionation could have been reached, at least locally. Significantly lower isotopic composition of meteoric fluids associated with Au mineralization compared to those associated with the intrusion-related mineralizations could have resulted from changing paleoclimate and/or analytical problems of extraction of water from fluid inclusions. The proposed genetic model for the Au deposit at Rozália mine highlights the importance of hydrothermal activity during the early stage of caldera collapse. Caldera subsidence established new, convective, fluid-flow paths along marginal caldera faults, which acted as infiltration zones. Major metal precipitation occurred within subhorizontal structures that formed as the result of a collapse-related stress field. A shallow, differentiated magma chamber at the base of the volcano was the likely source of heat and magmatic components for the mineralizing fluids.Editorial handling: S. Nicolescu  相似文献   
318.
319.
Rare Archaean light rare earth element (LREE)-enriched mafic rocks derived from a strongly refractory mantle source show a range of features in common with modern boninites. These Archaean second-stage melts are divided into at least two distinct groups—Whundo-type and Whitney-type. Whundo-type rocks are most like modern boninites in terms of their composition and association with tholeiitic to calc-alkaline mafic to intermediate volcanics. Small compositional differences compared to modern boninites, including higher Al2O3 and heavy REE (HREE), probably reflect secular changes in mantle temperatures and a more garnet-rich residual source. Whundo-type rocks are known from 3.12 and 2.8 Ga assemblages and are true Archaean analogues of modern boninites. Whitney-type rocks occur throughout the Archaean, as far back as ca. 3.8 Ga, and are closely associated with ultramafic magmatism including komatiites, in an affiliation unlike that of modern subduction zones. They are characterised by very high Al2O3 and HREE concentrations, and their extremely depleted compositions require a source which at some stage was more garnet-rich than the source for either modern boninites or Whundo-type second-stage melts. Low La/Yb and La/Gd ratios compared to Whundo-type rocks and modern boninites either reflect very weak subduction-related metasomatism of the mantle source or very limited crustal assimilation by a refractory-mantle derived melt. Regardless, the petrogenesis of the Whitney-type rocks appears either directly or indirectly related to plume magmatism. If Whitney-type rocks have a boninitic petrogenesis then a plume related model similar to that proposed for the modern Tongan high-Ca boninites might apply, but with uniquely Archaean source compositions and source enrichment processes. Second-stage melts from Barberton (S. Africa –3.5 Ga) and ca. 3.0 Ga rocks from the central Pilbara (Australia) have features in common with both Whundo- and Whitney-types, but appear more closely related to the Whitney-type. Subduction zone processes essentially the same as those that produce modern boninites have operated since at least ~3.12 Ga, while a uniquely Archaean boninite-forming process, involving more buoyant oceanic plates and very inefficient mantle-source enrichment, may have occurred before then.  相似文献   
320.
Two short cores of late Holocene, low tidal, estuarine sediment from the sheltered fringes of the Auckland's Waitemata Harbor, New Zealand, record the following changes through time since human colonization: an abrupt decline and disappearance of marine molluscs, a major decline and virtual disappearance of ostracods, an abrupt decline in calcareous foraminifera (mostlyAmmonia spp.), a rapid increase, in abundance of agglutinated foraminifera, large diatoms, and freshwater thecamoebians, and an increase in sedimentation rate, but no consistent trend in change of grain size. The up-core foraminiferal changes mimic their present day up-estuary zonation, which correlates strongly with decreasing salinity and pH. In both localities the faunal changes can be correlated with the documented local land-use history and increased freshwater runoff over time. At the head of the Waitemata Harbor, in Lucas Creek estuary, three phases of foraminiferal faunal change occurred: minor changes during initial Polynesian forest clearance (1500–1800 AD), a major change in early European times (1840–1870 AD) with clearance of most of the remaining native forest, and another small change in very, recent times (∼1990s) with urbanization in the Lucas Creek catchment. On the eastern, seaward fringes of the Waitemata Harbor, in the smaller Tamaki Estuary, no faunal changes occurred in association with complete forest clearance and establishment of pastoral farming in Polynesian and early European times (before 1950s). Major foraminiferal and other faunal changes occurred in the late European period (1960s–1970s) coincident with the onset of major urbanization spreading throughout the Tamaki catchment. Our results suggest increased freshwater runoff is the major culprit for many of the observed biotic changes in the urbanized estuaries of New Zealand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号