首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   2篇
地球物理   9篇
地质学   12篇
海洋学   2篇
天文学   1篇
自然地理   7篇
  2023年   1篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有31条查询结果,搜索用时 46 毫秒
11.
The influence of the geomagnetic field on climate, a long hotly disputed issue, was examined for the Matuyama–Brunhes (MB) magnetic polarity transition using palynological and paleomagnetic data sets from a high accumulation rate (ca. 50 cm/kyr) sediment core from Osaka Bay. During the period from marine oxygen isotope stages (MIS) 20 to 18, climate change is well correlated with global ice volume variation in the precession cycle, with the exception of the early half of MIS 19. The postglacial warming after substage 20.2 was interrupted by cooling that began just before the sea-level highstand correlated with substage 19.3 and persisted until about a mid-point between 19.3 and 19.2, followed by a rapid warming. The thermal maximum clearly postdates the highest sea-level highstand by 6–7 kyr, and the connection between orbital forcing and climate was disrupted. The cooling event coincided with the center of the paleointensity low during the MB transition. This unusual climate cooling across a sea-level peak is very likely related to the field intensity decrease. The data from Osaka Bay may suggest an instance where the geomagnetic field has influenced climate in the past.  相似文献   
12.
In order to investigate the strength and deformation anisotropy of compacted decomposed granite soils, a series of drained triaxial compression tests was performed on unsaturated and saturated decomposed granite soils. The specimens were subjected to compression tests such that the angle δ of the direction of the major principal stress, σ 1, during triaxial compression relative to the compaction plane (bedding plane) varies, with δ = 0°, 45° and 90°. Test results indicated that the compressive strain of the specimens subjected to isotropic consolidation was influenced strongly by the angle δ. In addition, the effect of the angle δ on the triaxial compressive strength and deformation was more evident in unsaturated specimens than in saturated specimens. Based on the test results, a procedure which can be used to estimate the shear strength of unsaturated soils taking into account various angles δ was proposed.  相似文献   
13.
We construct a viscoelastic FEM model with 3-D configuration of the subducting Philippine Sea plate in Southwest Japan to simulate recent 300-year kinematic earthquake cycles along the Nankai-Suruga-Sagami trough, based on the kinematic earthquake cycle model. This 300-year simulation contains a series of three great interplate earthquakes. The inclusion of viscoelasticity produces characteristic velocity field during earthquake cycles regardless of the assumed constant plate coupling throughout the interseismic period. Just after the occurrence of interplate earthquakes, the viscoelastic relaxation creates the seaward motion in the inland region. In the middle period, the seaward motion gradually decreases, and the resultant velocity field is similar to the elastic one. Later, just before the next interplate earthquake, displacements due to the interplate coupling in the viscoelastic material are distributed more broadly in the forearc region than in the purely elastic one, since the viscoelastic relaxation due to the previous earthquake mostly disappears. The effects of such interplate earthquake cycles on five major inland faults in southwest Japan, where large intraplate earthquakes occurred during this period, are quantitatively evaluated using the Coulomb failure function (CFF). The calculated change in CFF successfully predicts the occurrence of the 1995 Kobe earthquake (M~7). The occurrence of other inland earthquakes, however, cannot be explained by the calculated changes in CFF, and especially the 1891 Nobi earthquake (M~8), the largest inland earthquake in Japan, which occurred at the time close to the local minimum of CFF. This implies that further improvements are necessary for our FEM modeling, such as the modeling of steady east-west compressive force and stress interactions between the inland faults.  相似文献   
14.
The Hyuga-nada region of southwest Japan, which is located off the east coast of Kyushu Island, may have the potential to generate great interplate earthquakes along the Nankai trough in the future. In this area, thrust earthquakes of M = 6.7–7.2 have occurred with recurrence intervals of approximately 30 years. In association with these earthquakes, possible local heterogeneities of plate coupling may be expected within 100 km from the coast in the Hyuga-nada region. We investigate numerical experiments to determine the spatial and temporal resolution of slip on the plate interface beneath the Hyuga-nada offshore region. For this purpose, we calculated synthetic displacement data from the result of numerical simulation conducted for the afterslip following an Mw 6.8 earthquake, for existing global positioning system stations on land and planned ocean floor seismic network stations. The spatial and temporal distribution of fault slip is then estimated using a Kalman filter-based inversion. The slip distribution estimated by using ocean floor stations demonstrates that the heterogeneity of plate coupling is resolved approximately within 50 km from the coastal area. This heterogeneity corresponds to the coseismic area of an Mw 6.8 earthquake with a radius of 10 km. Our study quantitatively evaluates the spatial resolution of aseismic slip in the Hyuga-nada region. Analysis based on continuous ocean floor data is useful for resolving the spatial variations of heterogeneities in plate couplings.  相似文献   
15.
Paleomagnetic records of the Gauss-Matuyama reversal were obtained from two loess sections at Baoji on the Chinese Loess Plateau. Stepwise thermal demagnetization shows two obvious magnetization components. A low-temperature component isolated between 100 and 200–250°C is close to the present geomagnetic field direction, and a high-temperature component isolated above 200–250°C reveals clearly normal, reversed, and transitional polarities. Magnetostratigraphic results of both sections indicated that the Gauss-Matuyama reversal consists of a high-frequency polarity fluctuation zone, but the characteristic remanent magnetization directions during the reversal are clearly inconsistent. Rock magnetic experiments demonstrated that for all the specimens with normal, reversed, and transitional polarities magnetite and hematite are the main magnetic carriers. Anisotropy of magnetic susceptibility indicates that the studied loess sediments have a primary sedimentary fabric. Based on virtual geomagnetic pole latitudes, the Gauss-Matuyama reversal records in the two sections are accompanied by 14 short-lived geomagnetic episodes (15 rapid polarity swings) and 12 short-lived geomagnetic episodes (13 rapid polarity swings), respectively. Our new records, together with previous ones from lacustrine, marine, and aeolian deposits, suggest that high-frequency polarity swings coexist with the Gauss-Matuyama reversal, and that the Gauss-Matuyama reversal may have taken more than 11 kyr to complete. However, we need more detailed analyses of sections across polarity swings during reversals as well as more high-resolution reversal records to understand geomagnetic behavior and inconsistent characteristic remanent magnetization directions during polarity reversals.  相似文献   
16.
We report on the diffuse X‐ray emission from the Galactic Centre (GCDX) observed with the X‐ray Imaging Spectrometer (XIS) on board the Suzaku satellite. The highly accurate energy calibration and extremely low background of the XIS provide many new facts on the GCDX. These are (1) the origin of the lines at 6.7 and 7.0 keV is collisional excitation in a hot plasma, (2) the discovery of new SNR and super‐bubble candidates, (3) most of the 6.4 keV line is X‐ray fluorescence, and (4) time variability of the 6.4 keV line is found from the Sgr B2 complex. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
17.
Abstract The tectonic history of the Okcheon Metamorphic Belt (OMB) is a key to understanding the tectonic relationship between South Korea, China and Japan. The petrochemistry of 150 psammitic rocks in the OMB indicates that the depositional environment progressively deepened towards the northwest. These data, combined with the distribution pattern of oxide minerals and the abundance of carbonaceous material, support a half‐graben basin model for the OMB. Biotite and muscovite K–Ar dates from metasediments in the central OMB range from 102 to 277 Ma. K–Ar ages of 142–194 Ma are widespread throughout the area, whereas the older ages of 216–277 Ma are restricted to the metasediments of the middle part of the central OMB. The younger (Cretaceous) ages are only found in metasediments that are situated near the Cretaceous granite intrusions. The 216–277 Ma dates from weakly deformed areas represent cooling ages of M1 intermediate pressure/temperature (P/T) metamorphism. The relationship between age distribution and deformation pattern indicates that the Jurassic muscovite and biotite dates can be interpreted as complete resetting ages, caused by thermal and deformational activities associated with Jurassic granite plutonism. Well‐defined 40Ar/39Ar plateau ages of 155–169 Ma for micas from both metasediments and granitic rocks can be correlated with the main Jurassic K–Ar mica ages (149–194 Ma). U–Pb zircon dates for biotite granite from the southwest OMB are 167–169 Ma. On the basis of the predominantly Jurassic igneous and metamorphic ages and the uniformity of d002 values for carbonaceous materials in the study area, it is suggested that the OMB has undergone amphibolite facies M2 metamorphism after M1 metamorphism. This low P/T M2 regional thermal metamorphism may have been caused by the regional intrusion of Jurassic granites. The OMB may have undergone tectono‐metamorphic evolution as follows: (i) the OMB was initiated as an intraplate rift in the Neoproterozoic during break‐up of Rodinia, and may represent the extension of Huanan aulacogen within the South China block; (ii) sedimentation continued from the Neoproterozoic to the Ordovician, perhaps with several unconformities; (iii) M1 intermediate P/T metamorphism occurred during the Late Paleozoic due to compression caused by collision between the North and South China blocks in an area peripheral to the collision zone; and (iv) during the Early to Middle Jurassic, north‐westward subduction of the Farallon‐Izanagi Plate under the Asian Plate resulted in widespread intrusion of granites, which triggered M2 low P/T regional thermal metamorphism in the OMB. This event also formed the dextral Honam shear zone at the boundary between the OMB and Precambrian Yeongnam massif.  相似文献   
18.
A laser fusion Ar-Ar technique applied on single crystals of kyanite from river sands of the Kitakami Mountain region of northeast Japan yielded ages of up to 16 Ga, more than three times the age of the earth. Although the age values are geologically meaningless, the ultra-high excess argon in kyanites is unique and hitherto unreported. We interpret this to be an artifact of ultra-high argon pressure derived from radiogenic argon in potassium-rich phases such as phengites during the Barrovian type retrogression of the ultra-high pressure rocks in this region.  相似文献   
19.
Xu  Jialin  Xu  Chengshun  Huang  Linghui  Hyodo  Masayuki 《Acta Geotechnica》2023,18(2):811-827
Acta Geotechnica - Gas production by depressurization can significantly increase the effective stress in hydrate-bearing sediments. Therefore, strength and deformation characteristics of sediments...  相似文献   
20.
Nguyen D.  Nuong  Tetsumaru  Itaya    Hironobu  Hyodo  Kazumi  Yokoyama 《Island Arc》2009,18(2):282-292
Conglomerates of the Kuma Group, central Shikoku, southwest Japan contain Sanbagawa schist clasts with a variety of metamorphic grades and lithologies. K–Ar and 40Ar/39Ar dating of phengite show all the pelitic schist clasts from low- to high-grade zones have similar phengite ages (82–84 Ma) that are significantly older than those from the in situ Sanbagawa sequence of central Shikoku. This is because the Kuma–Sanbagawa sequence was exhumed earlier than the in situ Asemi sequence with an exhumation process intermediate between those for the Kanto Mountains and the in situ Asemi sequences. 40A/39Ar plateau ages (103 and 117 Ma) of phengite in amphibolites indicate the timing of the early stage of the exhumation of the metamorphic pile, probably close to the peak metamorphic age.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号