首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   15篇
  国内免费   3篇
测绘学   2篇
大气科学   9篇
地球物理   59篇
地质学   88篇
海洋学   7篇
天文学   58篇
综合类   2篇
自然地理   4篇
  2023年   1篇
  2022年   5篇
  2021年   1篇
  2020年   3篇
  2019年   5篇
  2018年   10篇
  2017年   6篇
  2016年   10篇
  2015年   9篇
  2014年   13篇
  2013年   8篇
  2012年   9篇
  2011年   8篇
  2010年   18篇
  2009年   14篇
  2008年   10篇
  2007年   13篇
  2006年   17篇
  2005年   7篇
  2004年   5篇
  2003年   11篇
  2002年   12篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1993年   1篇
  1991年   3篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1977年   1篇
  1975年   3篇
  1974年   1篇
  1970年   1篇
  1965年   1篇
排序方式: 共有229条查询结果,搜索用时 15 毫秒
101.
The volcaniclastic Tepoztlán Formation (TF) represents an important rock record to unravel the early evolution of the Transmexican Volcanic Belt (TMVB). Here, a depositional model together with a chronostratigraphy of this Formation is presented, based on detailed field observations together with new geochronological, paleomagnetic, and petrological data. The TF consists predominantly of deposits from pyroclastic density currents and extensive epiclastic products such as tuffaceous sandstones, conglomerates and breccias, originating from fluvial and mass flow processes, respectively. Within these sediments fall deposits and lavas are sparsely intercalated. The clastic material is almost exclusively of volcanic origin, ranging in composition from andesite to rhyolite. Thick gravity-driven deposits and large-scale alluvial fan environments document the buildup of steep volcanic edifices. K-Ar and Ar-Ar dates, in addition to eight magnetostratigraphic sections and lithological correlations served to construct a chronostratigraphy for the entire Tepoztlán Formation. Correlation of the 577 m composite magnetostratigraphic section with the Cande and Kent (1995) Geomagnetic Polarity Time Scale (GPTS) suggests that this section represents the time intervall 22.8–18.8 Ma (6Bn.1n-5Er; Aquitanian-Burdigalian, Lower Miocene). This correlation implies a deposition of the TF predating the extensive effusive activity in the TMVB at 12 Ma and is therefore interpreted to represent its initial phase with predominantly explosive activity. Additionally, three subdivisions of the TF were established, according to the dominant mode of deposition: (1) the fluvial dominated Malinalco Member (22.8–22.2 Ma), (2) the volcanic dominated San Andrés Member (22.2–21.3 Ma) and (3) the mass flow dominated Tepozteco Member (21.3–18.8 Ma).  相似文献   
102.
103.
104.
We present the first clear observations of meteor shower activity from meteor-head echoes detected by a high-power large-aperture radar (HPLAR). Such observations have been performed at the Jicamarca VHF radar using its interferometric capabilities allowing the discrimination of meteor shower echoes from the much more frequent sporadic meteors. Until now, HPLARs were unable to distinguish meteor shower from the much more common sporadic meteor ones. In this work we have been able to detect and characterize the η-Aquariids (ETA) as well as the Perseids (PER) showers. The shower activity is more conspicuous for the ETA than for the PER shower due to the more favorable geometry. Namely, PER meteors come from low elevation angles, experiencing more filtering due to the combined Earth-atmosphere-radar instrument. In both cases, there is an excellent agreement between the measured mean velocity of the shower echoes and their expected velocity, within a fraction of 1 km s−1. Besides the good agreement with expected visual results, HPLARs observe meteors with a variety of particles sizes and masses, not observed by any other technique. Taking into account the different viewing volumes, compare to optical observations Jicamarca observes more than 1000 times more ETA meteors. Our results indicate that Jicamarca and other HPLARs are able to detect the echoes from meteor showers, but without interferometric capabilities such populations are difficult to identify just from their velocity distributions, particularly if their velocity distributions are expected to be similar to the more dominant distributions of sporadic meteors.  相似文献   
105.
It has been shown that due to the small surface of crater lakes, temperature surveillance is a problem using meteorological satellites. This is particularly true for El Chichón surface lake because it's about one tenth of an AVHRR pixel at nadir. In order to guarantee at least one unmixed pixel in AVHRR data, it is necessary to use only AVHRR data from NOAA satellite passes as close as possible to the nadir for the period 1996–2006, therefore AVHRR data of El Chichón's crater lake were only used it they were cloudless and had scan angles close to nadir. The analysis of the time series data shows that lake surface temperature had annual maximum values (> 35 °C) during 1996 and 1997 then surface temperature decay with a negative exponential trend reaching a steady state of about 30 °C in the last years (2004–2006). A seasonal temperature variation between the dry (December to May) and the wet (June to November) seasons is also observed. Differences between nocturnal and midday temperatures indicate the influence of lake energy emission (including reflectance) at midday under a strong short-wave solar radiation. Water surface radiative flux under these conditions reaches an average of 77.8 W m− 2 and a maximum of 187.1 W m− 2. Whereas nocturnal heat output from El Chichón crater lake has an average surface radiative flux of 20.4 W m− 2 and a maximum of 74.3 W m− 2.  相似文献   
106.
“Condensations” of light have been observed when Saturn's rings are seen almost edge on, and the Sun and the Earth are on opposite sides of the ring plane. These condensations are associated with ring C and Cassini's division. If the relative brightness between the two condensations and the optical thickness of ring C are known, we can calculate the optical thickness of Cassini's division, τCASS. Using Barnard's and Sekiguchi's measurements, we have obtained 0.01 ? τCASS ? 0.05. A brightness profile of the condensations which agrees well with visual observations is also presented.We are able to set an upper limit of about 0.01 for the optical thickness of any hypothetical outer ring. This rules out a ring observed by C. Cragg in 1954, but does not eliminate the D′ ring observed by Feibelman in 1967.It is known that the outer edge of ring B is almost at the position of the 1/2 resonance with Mimas. Franklin, Colombo, and Cook explained this fact in 1971, postulating a total mass of ring B of 10?6MSATURN. We have derived a formula for the mass of the rings, which is a linear function of the mean particle size. We find that 10?6MSATURN implies large particles (~70m). If the particles are small (~10cm), as currently believed, the total mass of ring B is not enough to shift the outer edge. We conclude that the above explanation and current size estimates are inconsistent.  相似文献   
107.
Armouring phenomena are common in river beds, gravel beaches and spits. The gravel segregation recognized at depth in three different beaches of Patagonia and Tierra del Fuego, Argentina, allows us to propose a mechanism for formation.

A mixed population of gravel set into motion by waves is deposited progressively. Granules and fine gravels with higher pivoting angles in the beach slope are easily trapped within the bed, while rounded pebbles continue rolling over (overpassing) it. Finally, decreasing flow velocity allows the deposition of the larger pebbles, thus armouring the beach.

A carpet of round clasts of uniform size is more stable than the same clasts in a mixed population armouring the bed and covering a uniform layer of rounded granules and fine gravels.  相似文献   

108.
109.
Resistivity inverse problems are routinely solved in order to characterize hydrocarbon bearing formations. They often require a large number of forward problems simulations. When considering a one dimensional (1D) planarly layered media, semi-analytical methods can be employed in order to solve a single forward problem in a fraction of a second. However, in some situations, a large number of (over one million) simulations is required, preventing this method to be used as a real time (logging) alternative. In this paper, we propose a novel semi-analytical method that dramatically reduces the total computational time, so it can be employed for real time inversion. In our proposed method, we select an ad hoc basis representation for the spectral solution such that its inverse Hankel transform can be computed analytically. The proposed method requires a pre-process that is expensive when compared with a single evaluation in classical semi-analytical methods. However, subsequent evaluations can be rapidly obtained, decreasing thus the total computational time by orders of magnitude when the number of required forward simulations is large.  相似文献   
110.
Landslides are a main cause of human and economic losses worldwide. For this reason, landslide hazard assessment and the capacity to predict this phenomenon have been topics of great interest within the scientific community for the implementation of early warning systems. Although several models have been proposed to forecast shallow landslides triggered by rainfall, few models have incorporated geotechnical factors into a complete hydrological model of a basin that can simulate the storage and movement of rainwater through the soil profile. These basin and full hydrological models have adopted a physically based approach. This paper develops a conceptual and physically based model called open and distributed hydrological simulation and landslides—SHIA_Landslide (Simulación HIdrológica Abierta, or SHIA, in Spanish)—that is supported by geotechnical and hydrological features occurring on a basin-wide scale in tropical and mountainous terrains. SHIA_Landslide is an original and significant contribution that offers a new perspective with which to analyse shallow landslide processes by incorporating a comprehensive distributed hydrological tank model that includes water storage in the soil coupled with a classical analysis of infinite slope stability under saturated conditions. SHIA_Landslide can be distinguished by the following: (i) its capacity to capture surface topography and effects concerning the subsurface flow; (ii) its use of digital terrain model (DTM) to establish the relationships among cells, geomorphological parameters, slope angle, direction, etc.; (iii) its continuous simulation of rainfall data over long periods and event simulations of specific storms; (iv) its consideration of the effects of horizontal and vertical flow; and (vi) its inclusion of a hydrologically complete water process that allows for hydrological calibration. SHIA_Landslide can be combined with real-time rainfall data and implemented in early warning systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号