首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   15篇
  国内免费   17篇
测绘学   6篇
大气科学   40篇
地球物理   117篇
地质学   152篇
海洋学   42篇
天文学   48篇
综合类   4篇
自然地理   19篇
  2022年   5篇
  2021年   10篇
  2020年   10篇
  2019年   8篇
  2018年   18篇
  2017年   12篇
  2016年   24篇
  2015年   11篇
  2014年   20篇
  2013年   22篇
  2012年   20篇
  2011年   19篇
  2010年   23篇
  2009年   25篇
  2008年   21篇
  2007年   23篇
  2006年   13篇
  2005年   17篇
  2004年   18篇
  2003年   12篇
  2002年   19篇
  2001年   12篇
  2000年   9篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   6篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   2篇
  1964年   1篇
  1957年   1篇
排序方式: 共有428条查询结果,搜索用时 15 毫秒
291.
Loci of extreme curvature of the topographic surface may be defined by the derivation function (T) depending on the first‐, second‐, and third‐order partial derivatives of elevation. The loci may partially describe ridge and thalweg lines. The first‐ and second‐order partial derivatives are commonly calculated from a digital elevation model (DEM) by fitting the second‐order polynomial to a 3×3 window. This approach cannot be used to compute the third‐order partial derivatives and T. We deduced formulae to estimate the first‐, second‐, and third‐order partial derivatives from a DEM fitting the third‐order polynomial to a 5×5 window. The polynomial is approximated to elevation values of the window. This leads to a local denoising that may enhance calculations. Under the same grid size of a DEM and root mean square error (RMSE) of elevation, calculation of the second‐order partial derivatives by the method developed results in significantly lower RMSE of the derivatives than that using the second‐order polynomial and the 3×3 window. An RMSE expression for the derivation function is deduced. The method proposed can be applied to derive any local topographic variable, such as slope gradient, aspect, curvatures, and T. Treatment of a DEM by the method developed demonstrated that T mapping may not substitute regional logistic algorithms to detect ridge/thalweg networks. However, the third‐order partial derivatives of elevation can be used in digital terrain analysis, particularly, in landform classifications.  相似文献   
292.
Recent mooring-based observations at several locations along the continental slope of the Arctic Ocean's Eurasian Basin showed a transformation of the Boundary Current (BC) from a mostly barotropic flow in Fram Strait to a jet-like baroclinic current northeast of Svalbard, and the reemergence of the barotropic structure of the flow in the eastern Eurasian Basin. This transformation is accompanied by a weakening of the flow from ~24 cm/s in Fram Strait to ~5 cm/s at the Lomonosov Ridge. The maximum of the baroclinic component of the BC at an intermediate depth (~200–370 m) is associated with the Atlantic Water core. The depth range of the baroclinic current maximum is controlled by cross-slope density gradients above and below the baroclinic velocity maximum as follows from the geostrophic balance of forces. According to the model simulations, the BC splits into shallow and deep branches in the proximity of Svalbard due to a divergence of isobaths, confirming topographically-controlled BC behavior. The shallow branch is located at a shelf break with a typical bottom depth of ~200 m and current speed of up to ~24 cm/s. The discussed results, which provide insight on some basic aspects of the dynamics of the BC (the major oceanic heat source for the Arctic Ocean), may be of importance for understanding of the ocean's role in shaping the arctic climate system state.  相似文献   
293.
Multi-phase long-period t* measurements are among the key evidences for the frequency-dependent mantle attenuation factor, Q. However, similarly to Q, poorly constrained variations of Earth’s structure may cause spurious frequency-dependent effects in the observed t*. By using an attenuation-coefficient approach which incorporates measurements of geometric spreading (GS), such effects can be isolated and removed. The results show that the well-known increase of body P-wave t* from ~0.2 s at short periods to ~1–2 s at long periods may be caused by a small and positive bias in the underlying GS, which is measured by a dimensionless parameter γ*?≈?0.06. Similarly to the nearly constant t* at teleseismic distances, this GS bias is practically range-independent and interpreted as caused by velocity heterogeneity within the crust and uppermost mantle. This bias is accumulated within a relatively thin upper part of the lithosphere and may be closely related to the crustal body-wave GS parameter γ?~?4–60 mHz reported earlier. After a correction for γ, P-wave t P * becomes equal ~0.18 s at all frequencies. By using conventional dispersion relations, this value also accounts for ~40 % of the dispersion-related delay in long-period travel times. For inner-core attenuation, the attenuation coefficient shows a distinctly different increase with frequency, which is remarkably similar to that of fluid-saturated porous rock. As a general conclusion, after the GS is accounted for, no absorption-band type or frequency-dependent upper-mantle Q is required for explaining the available t* and velocity dispersion observations. The meaning of this Q is also clarified as the frequency-dependent part of the attenuation coefficient. At the same time, physically justified theories of elastic-wave attenuation within the Earth are still needed. These conclusions agree with recent re-interpretations of several surface, body and coda-wave attenuation datasets within a broad range of frequencies.  相似文献   
294.
Nowadays, Southwestern Romania faces a large-scale aridization of the climate, revealed by the rise of temperatures and the decline of the amount of precipitations, with negative effects visible, among others, in the desiccation of forest vegetation. The present study means to identify the changes that occurred, quality-wise, in the past two decades(1990–2011) in forest vegetation in Southwestern Romania, and to establish the link between those changes and extant thermal stress in the region, whose particular features are high average annual and seasonal temperatures. In order to capture the evolution in time of climate aridization, a first step consisted in using climate data, the temperature and precipitation parameters from three weather stations; these parameters were analyzed both individually and as aridity indexes(De Martonne and UNEP). In order to quantify the changes in forest vegetation, NDVI indexes were used and analyzed, starting off from Landsat satellite images, acquired at three distinct moments in time, 1990, 2000 and 2011. In order to identify the link between the changes of NDVI index values and regional thermal stress, a yardstick of climate changes, statistical correlations were established between the peak values of average annual temperatures, represented in space, and negative changes in the NDVI index, as revealed by the change-detection analysis. The results obtained indicated there is an obvious(statistically significant) connection between thermal stress and the desiccation(degradation) of forest species in the analyzed area, with false acacia(Robinia Pseudoacacia) the main species to be impacted.  相似文献   
295.
The Peloritani Mountains are a fragment of an orogen variably attributed to the Alpine or Hercynian orogeny. On the basis of 39Ar-40Ar, U-Pb and Rb-Sr dating, the main metamorphism of the two medium–high grade metamorphic units, the Mela and Aspromonte Units, and most of the thrusting responsible for stacking the orogenic edifice are seen to be Hercynian. The main thrusting of the Aspromonte Unit over the lower grade units took place at 301±2 Ma. Brittle deformation during Tertiary reactivation of Hercynian thrust planes did not generate any rejuvenation of white micas in the studied sector. Our dataset shows a great complexity and we propose to unravel it by considering different levels of information. To first order, the Mela and Aspromonte Units differ in their metamorphic paths and their geochronological evolution. The Mela Unit shows generally younger ages (Carboniferous) than the Aspromonte Unit and, unlike the latter, was extensively retrogressed in greenschist facies. The Aspromonte Unit is itself geochronologically heterogeneous. Proterozoic ages are preserved both in titanite and in amphibole relics of one tectonic subunit; Devonian to Carboniferous amphibole ages are found in different other subunits; tertiary overprint is minor and spatially limited. We propose to consider the chronologically heterogeneous subunits as accreted pre-Hercynian terranes amalgamated late during the Hercynian orogeny. Micas in both units give scattered Mesozoic 39Ar-40Ar and Rb-Sr ages, with evidence for heterochemical mica generations. We interpret them as a result of widespread hydrothermal circulation event(s). Tertiary overprint is generally absent, with the exception of a small area near Messina where biotite and muscovite underwent a complex recrystallisation history in the interval between 48 and 61 Ma.An erratum to this article can be found at  相似文献   
296.
The partially ionized local interstellar medium, before interacting with the heliospheric plasma on the upwind side, most probably undergoes an outer bow shock. After conversion into a sub-magnetosonic plasma flow, it then passes around the heliopause. While the ionized component at the bow shock undergoes abrupt changes of its dynamical properties, the neutral component first continues to flow downstream of the shock with its unperturbed properties. Consequently, the two fluids immediately after the bow shock passage are out of dynamical and thermodynamical equilibrium. Neutral atoms move with a higher bulk velocity and are cooler than the ions. Due to intensive local charge-exchange couplings between neutral atoms and protons these different properties tend to mix each other via momentum and energy exchanges. It turns out that the charge exchange period is shorter than the relaxation period. Hence the distribution functions cannot relax rapidly enough to their highest-entropy forms, i.e. shifted Maxwellians. Here we study the transport processes of newly injected ions in velocity space considering their quasi-linear and non-linear interactions with the ambient MHD turbulence in the plasma interface region. For that purpose we study the turbulence levels in the helio-sheath plasma region. We calculate the expected deviations from equilibrium distributions of ionic and atomic species in the outer heliospheric interface. It clearly turns out from these studies that non-relaxated non-equilibrium distribution functions have to be expected both for O-/H-ions and atoms in this region. This has inherent implications for the diagnostics of interstellar parameters, deduced from observations made further inwards from the interface region.  相似文献   
297.
The left bank of the Pripiat' river, opposite of the Chernobyl Nuclear Power Plant (ChNPP) is covered with a developed network of drainage canals, built for the reclamation of the swampy floodplain. This area is highly contaminated after the disaster in 1986. Concentrations of the most mobile radionuclide, 90Sr, are comparable with 137Cs, and reach many MBq m-2. Their ratio in the upper 10 cm of soil is about 1. The high surface contamination as well as precipitation and flooding have been responsible for the water pollution in this area. Some specifics of 90Sr behaviour in surface and groundwater, controlled by the hydrological regime, are described.  相似文献   
298.
New statistical results for cosmic gamma-ray bursts are presented, based on aligned average time profiles. General signatures are discussed of averaged flux/spectrum evolution of the full set of the Second BATSE Catalog GRBs (Fishmanet al., 1995), as well as of the bright and dim subsets. The contradictory conclusions made by Norriset al., (1994) and Mitrofanovet al., (1995a) about the presence or the absence of the time-dilation of dim GRBs are discussed. The well-established effect of hardness/brightness correlation of GRBs is presented. The consequences of these statistical studies are discussed for the cosmological and galactic paradigms of GRBs sources.  相似文献   
299.
Large-eddy simulation (LES) is a well-established numerical technique, resolving the most energetic turbulent fluctuations in the planetary boundary layer. By averaging these fluctuations, high-quality profiles of mean quantities and turbulence statistics can be obtained in experiments with well-defined initial and boundary conditions. Hence, LES data can be beneficial for assessment and optimisation of turbulence closure schemes. A database of 80 LES runs (DATABASE64) for neutral and stably stratified planetary boundary layers (PBLs) is applied in this study to optimize first-order turbulence closure (FOC). Approximations for the mixing length scale and stability correction functions have been made to minimise a relative root-mean-square error over the entire database. New stability functions have correct asymptotes describing regimes of strong and weak mixing found in theoretical approaches, atmospheric observations and LES. The correct asymptotes exclude the need for a critical Richardson number in the FOC formulation. Further, we analysed the FOC quality as functions of the integral PBL stability and the vertical model resolution. We show that the FOC is never perfect because the turbulence in the upper half of the PBL is not generated by the local vertical gradients. Accordingly, the parameterised and LES-based fluxes decorrelate in the upper PBL. With this imperfection in mind, we show that there is no systematic quality deterioration of the FOC in the strongly stable PBL provided that the vertical model resolution is better than 10 levels within the PBL. In agreement with previous studies, we found that the quality improves slowly with the vertical resolution refinement, though it is generally wise not to overstretch the mesh in the lowest 500 m of the atmosphere where the observed, simulated and theoretically predicted stably stratified PBL is mostly located. The submission to a special issue of the “Boundary-Layer Meteorology” devoted to the NATO advanced research workshop “Atmospheric Boundary Layers: Modelling and Applications for Environmental Security”.  相似文献   
300.
The Tagish Lake meteorite is a primitive C2 chondrite that has undergone aqueous alteration shortly after formation of its parent body. Previous work indicates that if this type of material was part of a late veneer during terrestrial planetary accretion, it could provide a link between atmophile elements such as H, C, N and noble gases, and highly siderophile element replenishment in the bulk silicate portions of terrestrial planets following core formation. The systematic Re-Os isotope and highly siderophile element measurements performed here on five separate fractions indicate that while Tagish Lake has amongst the highest Ru/Ir (1.63 ± 0.08), Pd/Ir (1.19 ± 0.06) and 187Os/188Os (0.12564-0.12802) of all carbonaceous chondrites, these characteristics still fall short of those necessary to explain the observed siderophile element systematics of the primitive upper mantles of Earth and Mars. Hence, a direct link between atmophile and highly siderophile elements remains elusive, and other sources for replenishment are required, unless an as yet poorly constrained process fractionated Re/Os, Ru/Ir, and Pd/Ir following late accretion on both the Earth and Mars mantles.The unique elevated Ru/Ir combined with elevated 187Os/188Os of Tagish Lake may be attributed to Ru and Re mobility during aqueous alteration very early in its parent body history. The Os, Ir, Pt, and Pd abundances of Tagish Lake are similar to CI chondrites. The elevated Ru/Ir and the higher Re/Os and consequent 187Os/188Os in Tagish Lake, are balanced by a lower Ru/Ir and lower Re/Os and 187Os/188Os in CM-chondrites, relative to CI chondrites. A model that links Tagish Lake with CI and CM chondrites in the same parent body may explain the observed systematics. In this scenario, CM chondrite material comprises the exterior, grading downward to Tagish Lake material, which grades to CI material in the interior of the parent body. Aqueous alteration intensifies towards the interior with increasing temperature. Ruthenium and Re are mobilized from the CM layer into the Tagish Lake layer. This model may thus provide a potential direct parent body relationship between three separate groups of carbonaceous chondrites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号