首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   0篇
大气科学   6篇
地球物理   9篇
地质学   11篇
海洋学   5篇
自然地理   15篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2013年   3篇
  2011年   2篇
  2010年   1篇
  2009年   5篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1995年   1篇
  1994年   1篇
  1987年   1篇
  1983年   1篇
  1977年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
11.
12.
Vertical carbon fluxes between the surface and 2500 m depth were estimated from in situ profiles of particle size distributions and abundances me/asured off Cape Blanc (Mauritania) related to deep ocean sediment traps. Vertical mass fluxes off Cape Blanc were significantly higher than recent global estimates in the open ocean. The aggregates off Cape Blanc contained high amounts of ballast material due to the presence of coccoliths and fine-grained dust from the Sahara desert, leading to a dominance of small and fast-settling aggregates. The largest changes in vertical fluxes were observed in the surface waters (<250 m), and, thus, showing this site to be the most important zone for aggregate formation and degradation. The degradation length scale (L), i.e. the fractional degradation of aggregates per meter settled, was estimated from vertical fluxes derived from the particle size distribution through the water column. This was compared with fractional remineralization rate of aggregates per meter settled derived from direct ship-board measurements of sinking velocity and small-scale O2 fluxes to aggregates measured by micro-sensors. Microbial respiration by attached bacteria alone could not explain the degradation of organic matter in the upper ocean. Instead, flux feeding from zooplankton organisms was indicated as the dominant degradation process of aggregated carbon in the surface ocean. Below the surface ocean, microbes became more important for the degradation as zooplankton was rare at these depths.  相似文献   
13.
Estimations of porosity and permeability from well logs are important yet difficult tasks encountered in geophysical formation evaluation and reservoir engineering. Motivated by recent results of artificial neural network (ANN) modelling offshore eastern Canada, we have developed neural nets for converting well logs in the North Sea to porosity and permeability. We use two separate back-propagation ANNs (BP-ANNs) to model porosity and permeability. The porosity ANN is a simple three-layer network using sonic, density and resistivity logs for input. The permeability ANN is slightly more complex with four inputs (density, gamma ray, neutron porosity and sonic) and more neurons in the hidden layer to account for the increased complexity in the relationships. The networks, initially developed for basin-scale problems, perform sufficiently accurately to meet normal requirements in reservoir engineering when applied to Jurassic reservoirs in the Viking Graben area. The mean difference between the predicted porosity and helium porosity from core plugs is less than 0.01 fractional units. For the permeability network a mean difference of approximately 400 mD is mainly due to minor core-log depth mismatch in the heterogeneous parts of the reservoir and lack of adequate overburden corrections to the core permeability. A major advantage is that no a priori knowledge of the rock material and pore fluids is required. Real-time conversion based on measurements while drilling (MWD) is thus an obvious application.  相似文献   
14.
Two-dimensional seismic modelling has been undertaken on an overall progradational succession of sloping mudstone and sandstone units from the Palaeogene of Spitsbergen. The modelling shows that the main geometric features of the section would be resolved at 1500 m depth (with frequencies below 60 Hz, which is common in seismic data at these depths). However, interference between the base and top of lithological units gives lateral amplitude variations and discrepancies between the seismic image and the geometrical model. This is particularly prominent in low-frequency models. Terminations of reflectors, resembling toplap and onlap, may be interpreted, but are artefacts of the general convergence of lithological units present in the geometrical model. The geological section causes a seismic pattern resembling sigmoid progradational seismic facies. Two-dimensional seismic modelling is an efficient tool in bridging the gap between outcrop observations and subsurface data. Hence, modelled outcrop sections are important as reference points' for improved seismic stratigraphic interpretation.  相似文献   
15.
We use a poroelastic modelling algorithm to compute numerical experiments on wave propagation in a rock sample with partial saturation using realistic fluid distribution patterns from tomography scans. Frequencies are in the range 10 to 500 kHz. The rock is a homogeneous isotropic sandstone partially filled with gas and water, which are defined by their characteristic values of viscosity, compressibility and density. We assume no mixing and that the two different pore-fills occupy different macroscopic regions. The von Kármán self-similar correlation function is used, employing different fractal parameters to model uniform and patchy fluid distributions, respectively, where effective saturation is varied in steps from full gas to full water saturation. Without resorting to additional matrix–fluid interaction mechanisms, we are able to reproduce the main features of the variation in wave velocity and attenuation with effective saturation and frequency, as those of published laboratory experiments. Furthermore, the behaviour of the attenuation peaks versus water saturation and frequency is similar to that of White's model. The conversion of primary P-wave energy into dissipating slow waves at the heterogeneities is shown to be the main mechanism for attenuating the primary wavefield. Fluid/gas patches are shown to affect attenuation more than equivalent patches in the permeability or solid-grain properties.  相似文献   
16.
Neural computing has moved beyond simple demonstration to more significant applications. Encouraged by recent developments in artificial neural network (ANN) modelling techniques, we have developed committee machine (CM) networks for converting well logs to porosity and permeability, and have applied the networks to real well data from the North Sea. Simple three‐layer back‐propagation ANNs constitute the blocks of a modular system where the porosity ANN uses sonic, density and resistivity logs for input. The permeability ANN is slightly more complex, with four inputs (density, gamma ray, neutron porosity and sonic). The optimum size of the hidden layer, the number of training data required, and alternative training techniques have been investigated using synthetic logs. For both networks an optimal number of neurons in the hidden layer is in the range 8–10. With a lower number of hidden units the network fails to represent the problem, and for higher complexity overfitting becomes a problem when data are noisy. A sufficient number of training samples for the porosity ANN is around 150, while the permeability ANN requires twice as many in order to keep network errors well below the errors in core data. For the porosity ANN the overtraining strategy is the suitable technique for bias reduction and an unconstrained optimal linear combination (OLC) is the best method of combining the CM output. For permeability, on the other hand, the combination of overtraining and OLC does not work. Error reduction by validation, simple averaging combined with range‐splitting provides the required accuracy. The accuracy of the resulting CM is restricted only by the accuracy of the real data. The ANN approach is shown to be superior to multiple linear regression techniques even with minor non‐linearity in the background model.  相似文献   
17.
18.
The geology, petrography and chemical variation of the Pecket coal sequence, Magellan Region (52°57′S, 71°10′W), the only Chilean coal used for electricity generation on a large scale, has been studied in order to predict their combustion behaviour, especially in coal blends. The depositional environment of formation of the coal seams was a swamp rarely exposed to subaerial conditions and was associated with the development of the folded foreland of the Magellan basin during the Tertiary (Oligo–Miocene). The general tectonic regime of the collision of the Antarctic and South American plates is reflected by a system of joints with 40°N–50°W strike. The maceral composition of all six seams studied indicates high contents of vitrinite (>90%), minor content of liptinite (4.7%) and inertinite (<2%). Occurrence of tonstein horizons altered to kaolinite indicates a distal volcanism during peat accumulation. Coal rank varies between lignite and subbituminous (Ro=0.28–0.42%) with an average dry basis calorific value of 5450 kcal/kg, 17 wt.% moisture, 41 wt.% volatile matter, and sulphur content below 0.5 wt.%. The mineral matter (LTA) associated with the coal shows a dominance of kaolinite with quartz, smectite, and minor basanite. SiO2/Al2O3 and Fe2O3/CaO ratios of the ashes diminish towards the lower seams. With respect to the utilisation of Pecket coals in combustion, base/acid ratios (B/A) and silica ratios (SR) indicate potential fouling for seams 1, 2, 5, and 6i, with high fouling indexes (Rf) for seams 2 and 5. Pecket coal is excellent for blend combustion due to its low sulphur content.  相似文献   
19.
The causes of land-use and land-cover change: moving beyond the myths   总被引:39,自引:0,他引:39  
Common understanding of the causes of land-use and land-cover change is dominated by simplifications which, in turn, underlie many environment-development policies. This article tracks some of the major myths on driving forces of land-cover change and proposes alternative pathways of change that are better supported by case study evidence. Cases reviewed support the conclusion that neither population nor poverty alone constitute the sole and major underlying causes of land-cover change worldwide. Rather, peoples’ responses to economic opportunities, as mediated by institutional factors, drive land-cover changes. Opportunities and constraints for new land uses are created by local as well as national markets and policies. Global forces become the main determinants of land-use change, as they amplify or attenuate local factors.  相似文献   
20.
The Lower Cretaceous volcanic formations of Copiapó (Chile) host major stratiform, disseminated, vein, and stockwork mineral deposits. Among these are the Punta del Cobre district (Cu-Fe) and the neighbouring, large Candelaria deposit (Cu-Fe-Au). These deposits are likely to have formed during a major extensional event that was accompanied by granitoid emplacement that triggered important contact metamorphism, metasomatic activity and mineralization processes. We suggest here that alteration-mineralization processes developed within the upper-plate domain of a NNE-trending, ESE-dipping extensional system, while granitoids were accomodated within the lower-plate. If this model prove to be right, `Candelaria-type' deposits may be hidden beneath the present, higher structural position of the Punta del Cobre district. Received: 13 May 1999 / Accepted: 2 August 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号