首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   18篇
  国内免费   1篇
测绘学   5篇
大气科学   9篇
地球物理   111篇
地质学   77篇
海洋学   71篇
天文学   76篇
综合类   2篇
自然地理   27篇
  2021年   5篇
  2019年   3篇
  2018年   6篇
  2017年   5篇
  2016年   6篇
  2014年   10篇
  2013年   17篇
  2012年   11篇
  2011年   19篇
  2010年   12篇
  2009年   24篇
  2008年   15篇
  2007年   17篇
  2006年   13篇
  2005年   16篇
  2004年   15篇
  2003年   13篇
  2002年   15篇
  2001年   15篇
  2000年   6篇
  1998年   7篇
  1997年   7篇
  1996年   11篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1991年   6篇
  1990年   6篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1982年   6篇
  1981年   3篇
  1980年   6篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1968年   3篇
  1947年   2篇
  1921年   2篇
  1871年   3篇
排序方式: 共有378条查询结果,搜索用时 15 毫秒
41.
Several experiments to measure postimpact burial of seafloor mines by scour and fill have been conducted near the Woods Hole Oceanographic Institution's Martha's Vineyard Coastal Observatory (MVCO, Edgartown, MA). The sedimentary environment at MVCO consists of a series of rippled scour depressions (RSDs), which are large scale bedforms with alternating areas of coarse and fine sand. This allows simultaneous mine burial experiments in both coarse and fine sand under almost identical hydrodynamic forcing conditions. Two preliminary sets of mine scour burial experiments were conducted during winters 2001-2002 in fine sand and 2002-2003 in coarse sand with a single optically instrumented mine in the field of view of a rotary sidescan sonar. From October 2003 to April of 2004, ten instrumented mines were deployed along with several sonar systems to image mine behavior and to characterize bedform and oceanographic processes. In fine sand, the sonar imagery of the mines revealed that large scour pits form around the mines during energetic wave events. Mines fell into their own scour pits, aligned with the dominant wave crests and became level with the ambient seafloor after several energetic wave events. In quiescent periods, after the energetic wave events, the scour pits episodically infilled with mud. After several scour and infilling events, the scour pits were completely filled and a layer of fine sand covered both the mines and the scour pits, leaving no visible evidence of the mines. In the coarse sand, mines were observed to bury until the exposed height above the ripple crests was approximately the same as the large wave orbital ripple height (wavelengths of 50-125 cm and heights of 10-20 cm). A hypothesis for the physical mechanism responsible for this partial burial in the presence of large bedforms is that the mines bury until they present roughly the same hydrodynamic roughness as the orbital-scale bedforms present in coarse sand.  相似文献   
42.
In the last few decades there has been a surge in research focusing on coral disease. While climate change, specifically rising sea surface temperature, has been proposed as a major and growing driver of the emergence of marine diseases, to date a solid connection between disease epizootics and elevated sea surface temperature has not been established. However, a wealth of data now exists, compiled from many different perspectives, that may support such a connection. In this work we provide a comprehensive review targeting one coral disease, black band disease, that spans the infection process, pathobiology, and epizootiology, and links specific mechanisms of the disease process to increasing temperatures. This temperature‐driven pattern of infection can be expanded to include similar processes associated with other temperature‐related coral diseases. The conclusions presented here are based upon the results of many studies using a diverse suite of approaches that have been synthesized to argue that the emergence and continuing spread of black band disease is linked to warming sea surface temperatures. In summary, as global ocean temperatures increase seasonally and over decades, the environment shifts to become more favorable for the growth of potentially pathogenic microorganisms endemic to the immediate environment of the reef. The increase in the relative number of potential pathogens in the microbial community produces microenvironments conducive to the growth of other potential pathogens, leading to infection by a polymicrobial consortium. This consortium is easily perturbed by a (seasonal) temperature decrease, but remains associated with the coral host and can be reactivated with a subsequent seasonal increase in temperature, resulting in a cycle of temperature‐dependent disease emergence.  相似文献   
43.

Siliceous unicellular microalgae — diatoms and silicoflagellates from sediments in Amur Bay were analyzed with high temporal resolution to examine changes over the last 150 years. The age of sediments was estimated from unsupported 210Pb controlled by 137Cs. Siliceous microalgae examined in each cm of two sediment cores demonstrated significant changes in the ecological structure of the assemblages that reflected changes in sedimentation conditions. During the years 1860–1910 the sediments accumulated under the great influence of river runoff. For about the next 50 years the number of freshwater species and marine benthic diatoms in sediments sharply declined, which is probably connected with the weakening of the effects of river runoff due to deforestation. Since the early 1960s the sedimentation conditions in the Amur Bay changed significantly. Marine planktonic diatoms and silicoflagellates began to prevail in sediments and this reflects increasing microphytoplankton productivity. One consequence of this was the formation of seasonal bottom hypoxia in Amur Bay. The ecological structure of diatom and silicoflagellate assemblages indicates that the sea level began to rise since the early 1960s and this corresponds to the water and air temperature increase in the area for that period. The obtained data suggest that the environmental changes over the last 150 years in Armur Bay are associated with the weakening of river runoff due to deforestation, sea level rise caused by global warming, and the increase of siliceous microplankton productivity that resulted in the formation of seasonal bottom hypoxia.

  相似文献   
44.
45.
We present measurements of the altitude and eastward velocity component of mesospheric clouds in 35 imaging sequences acquired by the Mars Odyssey (ODY) spacecraft’s Thermal Emission Imaging System visible imaging subsystem (THEMIS-VIS). We measure altitude by using the parallax drift of high-altitude features, and the velocity by exploiting the time delay in the THEMIS-VIS imaging sequence.We observe two distinct classes of mesospheric clouds: equatorial mesospheric clouds observed between 0° and 180° Ls; and northern mid-latitude clouds observed only in twilight in the 200–300° Ls period. The equatorial mesospheric clouds are quite rare in the THEMIS-VIS data set. We have detected them in only five imaging sequences, out of a total of 2048 multi-band equatorial imaging sequences. All five fall between 20° south and 0° latitude, and between 260° and 295° east longitude. The mid-latitude mesospheric clouds are apparently much more common; for these we find 30 examples out of 210 northern winter mid-latitude twilight imaging sequences. The observed mid-latitude clouds are found, with only one exception, in the Acidalia region, but this is quite likely an artifact of the pattern of THEMIS-VIS image targeting. Comparing our THEMIS-VIS images with daily global maps generated from Mars Orbiter Camera Wide Angle (MOC-WA) images, we find some evidence that some mid-latitude mesospheric cloud features correspond to cloud features commonly observed by MOC-WA. Comparing the velocity of our mesospheric clouds with a GCM, we find good agreement for the northern mid-latitude class, but also find that the GCM fails to match the strong easterly winds measured for the equatorial clouds.Applying a simple radiative transfer model to some of the equatorial mesospheric clouds, we find good model fits in two different imaging sequences. By using the observed radiance contrast between cloud and cloud-free regions at multiple visible-band wavelengths, these fits simultaneously constrain the optical depths and particles sizes of the clouds. The particle sizes are constrained primarily by the relative contrasts at the available wavelengths, and are found to be quite different in the two imaging sequences: reff = 0.1 μm and reff = 1.5 μm. The optical depths (constrained by the absolute contrasts) are substantial: 0.22 and 0.5, respectively. These optical depths imply a mass density that greatly exceeds the saturated mass density of water vapor at mesospheric temperatures, and so the aerosol particles are probably composed mainly of CO2 ice. Our simple radiative transfer model is not applicable to twilight, when the mid-latitude mesospheric clouds were observed, and so we leave the properties of these clouds as a question for further work.  相似文献   
46.
A new field method for tar quantification was used at Coal Oil Point (COP), California to study the mechanisms transporting oil/tar from the nearby COP natural marine hydrocarbon seep field. This method segregates tar pieces into six size classes and assigns them an average mass based on laboratory or direct field measurements. Tar accumulation on the 19,927m(2) survey area was well resolved spatially by recording tar mass along twelve transects segmented into 4-m(2) blocks and then integrating over the survey area. A seasonal trend was apparent in total tar in which summer accumulations were an order of magnitude higher than winter accumulations. Based on multiple regression analyses between environmental data and tar accumulation, 34% of tar variability is explained by a combination of onshore advection via wind and low swell height inhibiting slick dispersion.  相似文献   
47.
Geological maps of South Carolina, covering > 6800 km2, confirm the existence of eight preserved Pleistocene shorelines above current sea level: Marietta (+ 42.6 m), Wicomico (+ 27.4 m), Penholoway (+ 21.3 m), Ladson (+ 17.4 m), Ten Mile Hill (+ 10.7 m), Pamlico (+ 6.7 m), Princess Anne (+ 5.2 m), and Silver Bluff (+ 3 m). Current geochronologic data suggest that these eight shorelines correlate with Marine Oxygen Isotope Stages (MIS) as follows: Marietta—older than MIS 77; Wicomico—MIS 55–45; Penholoway—MIS 19 or 17; Ladson—MIS 11; Ten Mile Hill—MIS 7; Pamlico—MIS 5; Princess Anne—MIS 5; and Silver Bluff—MIS 5 or 3. Except for the MIS 5e Pamlico, and possibly the MIS 11 Ladson, the South Carolina elevations are higher than predicted by isotope proxy-based reconstructions. The < 4 m of total relief from the Pamlico to the Silver Bluff shoreline in South Carolina, for which other reconstructions suggest an expected relief of ~ 80 m, illustrates the lack of match. Our results suggest that processes affecting either post-depositional changes in shoreline elevations or the creation of proxy sea-level estimates must be considered before using paleo sea-level position on continental margins.  相似文献   
48.
Major inorganic ions and stable carbon and oxygen isotopes in stream water, groundwater, groundwater seeps and springs were measured in the Corral Canyon meadow complex and watershed in the Toquima Mountains of central Nevada, USA. The purpose of the study was to determine whether stream water or groundwater was the source of water that supports vegetation in the meadow complex. Water samples from the watershed and meadow complex were mixed cation–HCO3 type. Stream water sampled at different locations in the meadow complex showed variations in temperature, pH and specific conductance. The cation–anion proportions for stream water were similar to groundwater, groundwater seeps and runoff from the meadow complex. Stable oxygen isotope ratios for stream water (?17·1 to ?17·6‰ versus VSMOW) and groundwater and groundwater seeps in the meadow site (?17·0 to ?17·7‰ versus VSMOW) were similar, and consistent with a local meteoric origin. Dissolved inorganic carbon (DIC) and the δ 13CDIC for stream water (?12·1 to ?15·0‰ versus VPDB) were different from that of groundwater from the meadow complex (?15·3 to ?19·9‰ versus VPDB), suggesting different carbon evolution pathways. However, a simple model based on cation–δ 13CDIC suggests that stream water was being recharged by shallow groundwater, groundwater seeps and runoff from the meadow complex. This leads to the conclusion that the source of water that supports vegetation in the meadow complex was primarily groundwater. The results of this study suggest that multiple chemical and stable carbon isotope tracers are useful in determining the source of water that supports vegetation in meadow complexes in small alpine watersheds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号