首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
地球物理   6篇
地质学   26篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2012年   2篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有32条查询结果,搜索用时 109 毫秒
11.
12.
High pressure and temperature reactions of a mixture of forsterite and hydrogen molecules have been carried out using a laser heated diamond anvil cell at 9.8–13.2 GPa and ~1,000 K. In situ X-ray diffraction measurements showed no sign of decomposition or phase transitions of the forsterite under these experimental conditions, indicating that the olivine structure was maintained throughout all runs. However, a substantial expansion of the unit cell volume of the forsterite was observed for samples down to ~3 GPa upon quenching to ambient pressure at room temperature. The Raman spectroscopy measurements under pressure showed significant shifts of the Raman peaks of the Si–O vibration modes for forsterite and of the intramolecular vibration mode for H2 molecules toward a lower frequency after heating. Additionally, no OH vibration modes were observed by Raman and FT-IR spectroscopic measurements. These lines of evidence show that the observed volume expansion in forsterite is not explained by the incorporation of hydrogen atoms as hydroxyl, but suggest the presence of hydrogen as molecules in the forsterite structure under these high pressure and temperature conditions.  相似文献   
13.
The thermoelastic parameters of synthetic Ca3Al2Si3O12 grossular garnet were examined in situ at high-pressure and high-temperature by energy dispersive X-ray diffraction, using a Kawai-type multi-anvil press apparatus coupled with synchrotron radiation. Measurements have been conducted at pressures up to 20 GPa and temperatures up to 1,650 K: this P, T range covered the entire high-P, T stability field of grossular garnet. The analysis of room temperature data yielded V 0,300 = 1,664 ± 2 ?3 and K 0 = 166 ± 3 GPa for K0 K^{\prime}_{0} fixed to 4.0. Fitting of our PVT data by means of the high-temperature third order Birch–Murnaghan or the Mie–Grüneisen–Debye thermal equations of state, gives the thermoelastic parameters: (∂K 0,T /∂T) P  = −0.019 ± 0.001 GPa K−1 and α 0,T  = 2.62 ± 0.23 × 10−5 K−1, or γ 0 = 1.21 for fixed values q 0 = 1.0 and θ 0 = 823 (Isaak et al. Phys Chem Min19:106–120, 1992). From the comparison of fits from two different approaches, we propose to constrain the bulk modulus of grossular garnet and its pressure derivative to K T0 = 166 GPa and KT0 K^{\prime}_{T0}  = 4.03–4.35. Present results are compared with previously determined thermoelastic properties of grossular-rich garnets.  相似文献   
14.
The thermoelastic parameters of the CAS phase (CaAl4Si2O11) were examined by in situ high-pressure (up to 23.7 GPa) and high-temperature (up to 2,100 K) synchrotron X-ray diffraction, using a Kawai-type multi-anvil press. PV data at room temperature fitted to a third-order Birch–Murnaghan equation of state (BM EOS) yielded: V 0,300 = 324.2 ± 0.2 Å3 and K 0,300 = 164 ± 6 GPa for K′ 0,300 = 6.2 ± 0.8. With K′ 0,300 fixed to 4.0, we obtained: V 0,300 = 324.0 ± 0.1 Å3 and K 0,300 = 180 ± 1 GPa. Fitting our PVT data with a modified high-temperature BM EOS, we obtained: V 0,300 = 324.2 ± 0.1 Å3, K 0,300 = 171 ± 5 GPa, K′ 0,300 = 5.1 ± 0.6 (?K 0,T /?T) P  = ?0.023 ± 0.006 GPa K?1, and α0,T  = 3.09 ± 0.25 × 10?5 K?1. Using the equation of state parameters of the CAS phase determined in the present study, we calculated a density profile of a hypothetical continental crust that would contain ~10 vol% of CaAl4Si2O11. Because of the higher density compared with the coexisting minerals, the CAS phase is expected to be a plunging agent for continental crust subducted in the transition zone. On the other hand, because of the lower density compared with lower mantle minerals, the CAS phase is expected to remain buoyant in the lowermost part of the transition zone.  相似文献   
15.
Mineral assemblages displayed by MORB and alkali-poor olivine tholeiites have been investigated over the pressure interval 4.6–18 GPa at 1200°C. Both compositions crystallize to form normal eclogites between 4.6 and 10 GPa and there is little change in the relative proportions of garnet and pyroxene over this range. However, the proportion of garnet increases rapidly above 10 GPa as pyroxene dissolves in the garnet structure and pyroxene-free garnetites (±stishovite) are produced by 14–15 GPa, dependent upon composition. The garnetite facies for both compositions possess zero-pressure densities of 3.75 g/cm3, implying that subducted oceanic crust remains appreciably denser than surrounding mantle to depths exceeding 600 km. It is demonstrated that the seismic velocity distributions in the mantle between 400 and 650 km are inconsistent with Anderson's hypothesis that this region is of eclogitic composition.  相似文献   
16.
The mechanism of the high pressure transformation of olivine in the presence of aqueous fluid was investigated by high pressure experiments conducted nominally at the wadsleyite + ringwoodite stability field at 14.5 GPa and 700 and 800°C. The microstructures of recovered samples were observed using an analytical transmission electron microscope (ATEM) for which foils were prepared using a focused ion beam technique. Glass films approximately 1 μm in width always occupied the interface between olivine and hydrous ringwoodite. ATEM measurements showed that the chemical compositions of the glass films had approximately the same Mg/Fe ratio as that of olivine, but a higher Si content. Micro-structural and -chemical observations suggest that these glass films formed as quenched glass from the aqueous fluid dissolving olivine and that hydrous ringwoodite was crystallized from the fluid. This indicates that the transformation of olivine to hydrous ringwoodite was prompted by the dissolution–reprecipitation process. The dissolution–reprecipitation process is considered an important mineral replacement mechanism in the Earth’s crust by which one mineral is replaced by a more stable phase or phases. However, this process has not previously been reported for deep mantle conditions.  相似文献   
17.
A new polymorph of FeS has been observed at pressures above 30 GPa at 1,300 K by in situ synchrotron X-ray diffraction measurements in a laser-heated diamond anvil cell. It is stable up to, at least, 170 GPa at 1,300 K. The new phase (here called FeS VI) has an orthorhombic unit cell with lattice parameters a = 4.8322 (17) Å, b = 3.0321 (6) Å, and c = 5.0209 (8) Å at 85 GPa and 300 K. Its topological framework is based on the NiAs-type structure as is the case for the other reported polymorphs (FeS I-V). The unit cell of FeS VI is, however, more distorted (contracted) along the [010] direction of the original NiAs-type cell. For example, the c/b axial ratio is ~1.66 at 85 GPa and 300 K, which is considerably smaller than that of orthorhombic FeS II (~1.72) and NiAs-type hexagonal FeS V (=√3 ≈ 1.73). The phase boundary between FeS IV and VI is expected to be located around 30 GPa at 1,300 K. The phase transition is accompanied by gradual and continuous changes in volume and axial ratios and may be second order. At room temperature, FeS VI becomes stable over FeS III at pressures above 36 GPa. It is, therefore, suggested that the phase boundary of FeS III–VI and/or FeS IV–VI has negative pressure dependence.  相似文献   
18.
Doklady Earth Sciences - The new results of experimental study of the Na2MgSiO4–Mg2SiO4 section of the SiO2–MgO–Na2O model system at 22–24 GPa and 1600–1900°C are...  相似文献   
19.
20.
Raman spectroscopy and heat capacity measurements have been used to study the post-perovskite phase of CaIr0.5Pt0.5O3, recovered from synthesis at a pressure of 15 GPa. Laser heating CaIr0.5Pt0.5O3 to 1,900 K at 60 GPa produces a new perovskite phase which is not recoverable and reverts to the post-perovskite polymorph between 20 and 9 GPa on decompression. This implies that Pt-rich CaIr1−xPtxO3 perovskites including the end member CaPtO3 cannot easily be recovered to ambient pressure from high P–T synthesis. We estimate an increase in the thermodynamic Grüneisen parameter across the post-perovskite to perovskite transition of 34%, of similar magnitude to those for (Mg,Fe)SiO3 and MgGeO3, suggesting that CaIr0.5Pt0.5O3 is a promising analogue for experimental studies of the competition in energetics between perovskite and post-perovskite phases of magnesium silicates in Earth’s lowermost mantle. Low-temperature heat capacity measurements show that CaIrO3 has a significant Sommerfeld coefficient of 11.7 mJ/mol K2 and an entropy change of only 1.1% of Rln2 at the 108 K Curie transition, consistent with the near-itinerant electron magnetism. Heat capacity results for post-perovskite CaIr0.5Rh0.5O3 are also reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号