首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5082篇
  免费   205篇
  国内免费   47篇
测绘学   103篇
大气科学   412篇
地球物理   1285篇
地质学   1699篇
海洋学   495篇
天文学   808篇
综合类   20篇
自然地理   512篇
  2022年   26篇
  2021年   64篇
  2020年   67篇
  2019年   72篇
  2018年   96篇
  2017年   86篇
  2016年   140篇
  2015年   134篇
  2014年   137篇
  2013年   239篇
  2012年   164篇
  2011年   247篇
  2010年   178篇
  2009年   259篇
  2008年   219篇
  2007年   203篇
  2006年   212篇
  2005年   178篇
  2004年   171篇
  2003年   153篇
  2002年   159篇
  2001年   82篇
  2000年   103篇
  1999年   87篇
  1998年   89篇
  1997年   65篇
  1996年   68篇
  1995年   88篇
  1994年   84篇
  1993年   63篇
  1992年   69篇
  1991年   58篇
  1990年   73篇
  1989年   63篇
  1988年   64篇
  1987年   67篇
  1986年   61篇
  1985年   71篇
  1984年   98篇
  1983年   73篇
  1982年   71篇
  1981年   59篇
  1980年   69篇
  1979年   57篇
  1978年   58篇
  1977年   42篇
  1976年   52篇
  1975年   54篇
  1974年   39篇
  1973年   51篇
排序方式: 共有5334条查询结果,搜索用时 15 毫秒
991.
A management proposal aims to partly remove a WWII military causeway at Palmyra Atoll to improve lagoon water circulation and alleviate sedimentation stress on the southeast backreef, an area of high coral cover and diversity. This action could result in a shift in sedimentation across reef sites. To provide management advice, we quantified the proximate environmental factors driving scleractinian coral cover and community patterns at Palmyra. The proportion of fine sedimentation was the optimal predictor of coral cover and changes in community structure, explaining 23.7% and 24.7% of the variation between sites, respectively. Scleractinian coral cover was negatively correlated with increases in fine sedimentation. Removing the causeway could negatively affect the Montipora corals that dominate the western reef terrace, as this genus was negatively correlated with levels of fine sedimentation. The tolerance limits of corals, and sediment re-distribution patterns, should be determined prior to complete removal of the causeway.  相似文献   
992.
993.
Conduits serve as major pathways for groundwater flow in karst aquifers. Locating them from the surface, however, is one of the most challenging tasks in karst research. Geophysical methods are often deployed to help locate voids by mapping variations of physical properties of the subsurface. Conduits can cause significant contrasts of some physical properties that can be detected; other subsurface features such as water-bearing fractures often yield similar contrasts, which are difficult to distinguish from the effects of the conduits. This study used electrical resistivity method to search for an unmapped karst conduit that recharges Royal Spring in the Inner Bluegrass karst region, Kentucky, USA. Three types of resistivity techniques (surface 2D survey, quasi-3D survey, and time-lapse survey) were used to map and characterize resistivity anomalies. Some of the major anomalies were selected as drilling targets to verify the existence of the conduits. Drilling near an anomaly identified by an electrical resistivity profile resulted in successful penetration of a major water-filled conduit. The drilling results also suggest that, in this study area, low resistivity anomalies in general are associated with water-bearing features. However, differences in the anomaly signals between the water-filled conduit and other water-bearing features such as water-filled fracture zones were undistinguishable. The electrical resistivity method is useful in conduit detection by providing potential drilling targets. Knowledge of geology and hydrogeology about the site and professional judgment also played important roles in locating the major conduit.  相似文献   
994.
We examine the warm season (April-September) rainfall climatology of the northeastern US through analyses of high-resolution radar rainfall fields from the Hydro-NEXRAD system and regional climate model simulations using the weather research and forecasting (WRF) model. Analyses center on the 5-year period from 2003 to 2007 and the study area includes the New York-New Jersey metropolitan region covered by radar rainfall fields from the Fort Dix, NJ WSR-88D. The objective of this study is to develop and test tools for examining rainfall climatology, with a special focus on heavy rainfall. An additional emphasis is on rainfall climatology in regions of complex terrain, like the northeastern US, which is characterized by land-water boundaries, large heterogeneity in land use and cover, and mountainous terrain in the western portion of the region. We develop a 5-year record of warm season radar rainfall fields for the study region using the Hydro-NEXRAD system. We perform regional downscaling simulations for the 5-year study period using the WRF model. Radar rainfall fields are used to characterize the interannual, seasonal and diurnal variation of rainfall over the study region and to examine spatial heterogeneity of rainfall. Regional climate model simulations are characterized by a wet bias in the rainfall fields, with the largest bias in the high-elevation regions of the model domain. We show that model simulations capture broad features of the interannual, seasonal, and diurnal variation of rainfall. Model simulations do not capture spatial gradients in radar rainfall fields around the New York metropolitan region and land-water boundaries to the east. The model climatology of convective available potential energy (CAPE) is used to interpret the regional distribution of warm season rainfall and the seasonal and diurnal variability of rainfall. We use hydrologic and meteorological observations from July 2007 to examine the interactions of land surface processes and rainfall from a regional perspective.  相似文献   
995.
There are currently no industry‐wide standards for the calibration and specification of water‐level monitoring pressure transducers. Consequently, specifications from different manufacturers are currently not directly comparable, and different branded sensors may not perform similarly under the same environmental conditions. This has been highlighted by the varied performance of 14 leading brands of pressure transducers under test conditions. In laboratory tests, transducers generally met product accuracy specifications, although temperature compensation was substandard in five absolute sensors. In a 99‐day field test, accuracy was typically within around ±10 mm for lower range pressure sensors, which exceeded some product specifications. Furthermore, there was evidence for linear and curved forms of instrument drift. As a result of the diverse performance of the transducers, it is recommended that an industry‐wide standard for calibration and specification is introduced. This would eliminate any uncertainty surrounding the current procedures and lead to more informed procurement by the user who would have a greater understanding of comparative instrument performance. Any new standard should also address sensor drift which is currently rarely cited in product specifications.  相似文献   
996.
A borehole permeameter is well suited for testing saturated hydraulic conductivity (K(sat)) at specific depths in the vadose zone. Most applications of the method involve fine-grained soils that allow hand auguring of test holes and require a small water reservoir to maintain a constant head. In non-cohesive gravels, hand-dug test holes are difficult to excavate, holes are prone to collapse, and large volumes of water are necessary to maintain a constant head for the duration of the test. For coarse alluvial gravels, a direct-push steel permeameter was designed to place a slotted pipe at a specific sampling depth. Measurements can be made at successive depths at the same location. A 3790 L (1000 gallons) trailer-mounted water tank maintained a constant head in the permeameter. Head in the portable tank was measured with a pressure transducer and flow was calculated based on a volumetric rating curve. A U.S. Bureau of Reclamation analytical method was utilized to calculate K(sat). Measurements with the permeameter at a field site were similar to those reported from falling-head tests.  相似文献   
997.
Between a.d. 2006 and 2008, we completed annual surveys of two mercury‐contaminated eroding banks, one forested and the other grass covered, along the gravel‐bed, bedrock South River in Virginia. Gridded digital terrain models with a resolution of 0·05 m were created from bank topography data collected using a terrestrial laser scanner. Model comparisons indicate that the forested bank retreated nearly 1 m around two leaning trees, while elsewhere the extent of bank retreat was negligible. On the grassy bank, retreat was controlled by the creation of small overhanging clumps of turf at the top of the bank, their occasional failure, and the ultimate removal of failed debris from the bank toe. Partial autocorrelation analysis of vertically integrated bank retreat demonstrates that bank profile erosion is virtually uncorrelated at horizontal distances greater than about 1 m on both banks, a length scale of approximately half the bank height. This extensive streamwise variability suggests that widely spaced profile data cannot adequately represent bank erosion at these sites. Additional analysis of our comprehensive spatial data also indicates that traditional bank profile surveys with any spacing greater than 1 m would result in measurement errors exceeding 10%, an important conclusion for assessing annual rates of mercury loading into the South River from bank erosion. Our results suggest that three‐dimensional gridded bare‐earth models of bank topography may be required to accurately measure annual bank retreat in similar river systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
998.
The broad belt of intraplate volcanism in the East Atlantic between 25° and 37° N is proposed to have formed by two adjacent hotspot tracks (the Madeira and Canary tracks) that possess systematically different isotopic signatures reflecting different mantle source compositions. To test this model, Hf isotope ratios from volcanic rocks from all individual islands and all major seamounts are presented in this study. In comparison with published Nd isotope variations (6 εNd units), 176Hf/177Hf ratios span a much larger range (14 εHf units). Samples from the proposed Madeira hotspot track have the most radiogenic Hf isotopic compositions (176Hf/177Hfm up to 0.283335), extending across the entire field for central Atlantic MORB. They form a relatively narrow, elongated trend on the Nd vs. Hf isotope diagram (stretching over > 10 εHf units) between a depleted N-MORB-like endmember and a moderately enriched composition located on, or slightly below, the Nd–Hf mantle array, which overlaps the proposed “C” mantle component of Hanan and Graham (1996). In contrast, all samples from the Canary hotspot track plot below the mantle array (176Hf/177Hfm = 0.282943–0.283067) and form a much denser cluster with less compositional variation (~4 εHf units). The cluster falls between (1) a low Hf isotope HIMU-like endmember, (2) a more depleted composition, and (3) the moderately enriched end of the Madeira trend. The new Hf isotope data confirm the general geochemical distinction of the Canary and Madeira domains in the East Atlantic. Both domains, however, seem to share a common, moderately enriched endmember that has “C”-like isotope compositions and is believed to represent subducted, <1-Ga-old oceanic lithosphere (oceanic crust and possibly minor sediment addition). The lower 176Hf/177Hf ratio of the enriched, HIMU-like Canary domain endmember indicates the contribution of oceanic lithosphere with somewhat older recycling ages of ≥1 Ga.  相似文献   
999.
Submarine mud volcanism is an important pathway for transfer of deep-sourced fluids enriched in hydrocarbons and other elements into the ocean. Numerous mud volcanoes (MVs) have been discovered along oceanic plate margins, and integrated elemental fluxes are potentially significant for oceanic chemical budgets. Here, we present the first detailed study of the spatial variation in fluid and chemical fluxes at the Carlos Ribeiro MV in the Gulf of Cadiz. To this end, we combine analyses of the chemical composition of pore fluids with a 1-D transport-reaction model to quantify fluid fluxes, and fluxes of boron, lithium and methane, across the sediment-seawater interface. The pore fluids are significantly depleted in chloride, but enriched in lithium, boron and hydrocarbons, relative to seawater. Pore water profiles of sulphate, hydrogen sulphide and total alkalinity indicate that anaerobic oxidation of methane occurs at 34-180 cm depth below seafloor. Clay mineral dehydration, and in particular the transformation of smectite to illite, produces pore fluids that are depleted in chloride and potassium. Profiles of boron, lithium and potassium are closely related, which suggests that lithium and boron are released from the sediments during this transformation. Pore fluids are expelled into the water column by advection; fluid flow velocities are 4 cm yr−1 at the apex of the MV but they rapidly decrease to 0.4 cm yr−1 at the periphery. The associated fluxes of boron, lithium and methane vary between 7-301, 0.5-6 and 0-806 mmol m−2 yr−1, respectively. We demonstrate that fluxes of Li and B due to mud volcanism may be important on a global scale, however, release of methane into the overlying water column is suppressed by microbial methanotrophy.  相似文献   
1000.
High concentrations of metals in organic matter can inhibit decomposition and limit nutrient availability in ecosystems, but the long-term fate of metals bound to forest litter is poorly understood. Controlled experiments indicate that during the first few years of litter decay, Al, Fe, Pb, and other metals that form stable complexes with organic matter are naturally enriched by several hundred percent as carbon is oxidized. The transformation of fresh litter to humus takes decades, however, such that current datasets describing the accumulation and release of metals in decomposing organic matter are timescale limited. Here we use atmospheric 210Pb to quantify the fate of metals in canopy-derived litter during burial and decay in coniferous forests in New England and Norway where decomposition rates are slow and physical soil mixing is minimal. We measure 210Pb inventories in the O horizon and mineral soil and calculate a 60-630 year timescale for the production of mobile organo-metallic colloids from the decomposition of fresh forest detritus. This production rate is slowest at our highest elevation (∼1000 m) and highest latitude sites (>63°N) where decomposition rates are expected to be low.We calculate soil layer ages by assuming a constant supply of atmospheric 210Pb and find that they are consistent with the distribution of geochemical tracers from weapons fallout, air pollution, and a direct 207Pb application at one site. By quantifying a gradient of organic matter ages with depth in the O horizon, we describe the accumulation and loss of metals in the soil profile as organic matter transforms from fresh litter to humus. While decomposition experiments predict that Al and Fe concentrations increase during the initial few years of decay, we show here that these metals continue to accumulate in humus for decades, and that enrichment occurs at a rate higher than can be explained by quantitative retention during decomposition alone. Acid extractable Al and Fe concentrations are higher in the humus layer of the O horizon than in the mineral soil immediately beneath this layer: it is therefore unlikely that physical soil mixing introduces significant Al and Fe to humus. This continuous enrichment of Al and Fe over time may best be explained by the recent suggestion that metals are mined from deeper horizons and brought into the O horizon via mycorrhizal plants. In sharp contrast to Al and Fe, we find that Mn concentrations in decomposing litter layers decrease exponentially with age, presumably because of leaching or rapid uptake, which may explain the low levels of acid extractable Mn in the mineral soil. This study quantifies how metals are enriched and lost in decomposing organic matter over a longer timescale than previous studies have been able to characterize. We also put new limits on the rate at which metals in litter become mobile organo-metallic complexes that can migrate to deeper soil horizons or surface waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号