首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   440篇
  免费   3篇
  国内免费   6篇
测绘学   14篇
大气科学   15篇
地球物理   97篇
地质学   141篇
海洋学   28篇
天文学   91篇
综合类   6篇
自然地理   57篇
  2023年   2篇
  2021年   6篇
  2019年   5篇
  2018年   4篇
  2017年   7篇
  2016年   7篇
  2015年   20篇
  2014年   17篇
  2013年   30篇
  2012年   17篇
  2011年   23篇
  2010年   20篇
  2009年   35篇
  2008年   17篇
  2007年   19篇
  2006年   18篇
  2005年   19篇
  2004年   21篇
  2003年   15篇
  2002年   7篇
  2001年   8篇
  2000年   4篇
  1999年   6篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   6篇
  1994年   7篇
  1993年   6篇
  1991年   6篇
  1990年   4篇
  1989年   3篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   6篇
  1983年   7篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1977年   6篇
  1976年   5篇
  1975年   4篇
  1974年   1篇
  1973年   6篇
  1972年   4篇
  1971年   3篇
  1970年   3篇
  1969年   2篇
  1968年   4篇
排序方式: 共有449条查询结果,搜索用时 15 毫秒
41.
A cellular automata model of surface water flow   总被引:1,自引:0,他引:1  
Previous cellular automata models of surface water flow have been constructed to reflect steady, gradually‐varied flow conditions. While these models are extremely important in showing the near‐equilibrium forms that result from the interactions of water and boundary material, highly dynamic forms and processes require models that represent unsteady flow conditions. In order to simulate unsteady flow in a cellular model of surface water flow, the conservation of mass and the Manning's equations are coupled with an algorithm to delay the movement of water from one pixel to the next until the correct timing is reached. This approach yields highly realistic flood wave hydrographs when compared with flood observations in the Walnut Gulch Experiment Watershed. Coupling this unsteady flow model with simple laws of sediment erosion, transport, and deposition should allow event‐based simulations of watershed and river channel geomorphologic change. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
42.
Although the creation of edges during forest fragmentation can have important abiotic and biotic impacts, especially under conditions of future climate change, mechanistic models of edge effects have not been forthcoming. A simple numerical model of two-dimensional heat flow is developed and applied to a vertical forest/clearcut edge profile and to simulated fragmented landscapes. Height-specific thermal diffusivity and conductivity in the forest were assumed to vary in proportion to foliage densities measured in the central Amazon. In the edge profile, the clearcut that abutted the edge served as a heat source and its temperature was maintained at a constant value higher than in the initially cooler forest. In the fragmented landscapes, simulated treefall gaps were heat sources whose temperature varied with sun movements during the day. Gap frequency was varied so as to approximate the gap coverage observed in selectively logged forests. In one set of simulations, temperature in the openings was systematically varied; in another, thermal diffusivity of the forest was varied. Along the edge profile, high temperatures in the clearcut were rapidly transmitted into the upper canopy due to additive edge effects. Temperatures in the forest understory were also very sensitive to clearcut temperatures due to relatively sparse understory foliage. An overall increase in forest diffusivity led to markedly higher temperatures close to the edge and a more even temperature distribution among height strata. In fragmented landscapes, total gap coverage and additivity from neighboring gaps strongly influenced forest temperatures. At low conductivities, heat flowed only into the forest close to the gaps and hence forest temperature increased almost linearly with gap area. However, at high conductivities, heat flowed far into the forest and forest temperature varied as a function of gap density in the surrounding neighborhood. Because of these additive effects, slight increases in total gap area led to disproportionate changes in the thermal profile of the landscape. These results have important implications for the conservation of forest ecosystems.  相似文献   
43.
The common belief currently shared by many geoscientists concerning the climatic interpretation of limestones is that a warm-water environment is essential. This concept is not necessarily true because the rate and extent of terrigenous sediment dilution, rather than water temperature, is the primary factor determining whether or not a limestone forms at nearshore or continental shelf depths. Because carbonate productivity is lowest in cold climates, however, CaCO3 abundance and the thickness of carbonate accumulations tend to be least at high latitudes. In this regard present-day continental shelves and beaches offer a poor model for comparing cold-water and warm-water carbonates because of the generally emergent continental tectonic framework, recent eustatic sea-level changes, and the presence of ice caps at the modern poles.Typically, the influence of climate on non-reef continental shelf and beach environments cannot be clearly distinguished by the presence or absence of major taxonomic groups. Faunal diversity and equitability are more sensitive in this regard. The absence of shelf-depth inorganic carbonate precipitates, micrite envelopes, and peloids may also point to the cold-water origin of a rock. Skeletal mineralogy and oxygen isotopes of certain unrecrystallized carbonates may be good paleoclimatic indicators; however, trace elements and physical-textural attributes of the carbonate fraction are probably temperature insensitive.Previous studies of high-latitude continental shelves have concentrated merely on the abundance of calcareous material and there is seemingly a disproportionate amount of information with respect to low-latitude carbonate studies. Further research on cold-water carbonates may open up new avenues for alternative paleoenvironmental and paleoclimatic interpretations.  相似文献   
44.
45.
Fecal indicator levels in nearshore waters of South Florida are routinely monitored to assess microbial contamination at recreational beaches. However, samples of sand from the surf zone and upper beach are not monitored which is surprising since sand may accumulate and harbor fecal-derived organisms. This study examined the prevalence of fecal indicator organisms in tidally-affected beach sand and in upper beach sand and compared these counts to levels in the water. Since indicator organisms were statistically elevated in sand relative to water, the study also considered the potential health risks associated with beach use and exposure to sand. Fecal coliforms, Escherichia coli, enterococci, somatic coliphages, and F(+)-specific coliphages were enumerated from sand and water at three South Florida beaches (Ft. Lauderdale Beach, Hollywood Beach, and Hobie Beach) over a 2-year period. Bacteria were consistently more concentrated in 100g samples of beach sand (2-23 fold in wet sand and 30-460 fold in dry sand) compared to 100ml samples of water. Somatic coliphages were commonly recovered from both sand and water while F(+)-specific coliphages were less commonly detected. Seeding experiments revealed that a single specimen of gull feces significantly influenced enterococci levels in some 3.1m(2) of beach sand. Examination of beach sand on a micro-spatial scale demonstrated that the variation in enterococci density over short distances was considerable. Results of multiple linear regression analysis showed that the physical and chemical parameters monitored in this study could only minimally account for the variation observed in indicator densities. A pilot epidemiological study was conducted to examine whether the length of exposure to beach water and sand could be correlated with health risk. Logistic regression analysis results provided preliminary evidence that time spent in the wet sand and time spent in the water were associated with a dose-dependent increase in gastrointestinal illness.  相似文献   
46.
Quartz and rutile were synthesized from silica-saturated aqueous fluids between 5 and 20 kbar and from 700 to 940°C in a piston-cylinder apparatus to explore the potential pressure effect on Ti solubility in quartz. A systematic decrease in Ti-in-quartz solubility occurs between 5 and 20 kbar. Titanium K-edge X-ray absorption near-edge structure (XANES) measurements demonstrate that Ti4+ substitutes for Si4+ on fourfold tetrahedral sites in quartz at all conditions studied. Molecular dynamic simulations support XANES measurements and demonstrate that Ti incorporation onto fourfold sites is favored over interstitial solubility mechanisms. To account for the PT dependence of Ti-in-quartz solubility, a least-squares method was used to fit Ti concentrations in quartz from all experiments to the simple expression
RTlnX\textTiO 2 \textquartz = - 60952 + 1.520 ·T(K) - 1741 ·P(kbar) + RTlna\textTiO 2 RT\ln X_{{{\text{TiO}}_{ 2} }}^{\text{quartz}} = - 60952 + 1.520 \cdot T(K) - 1741 \cdot P(kbar) + RT\ln a_{{{\text{TiO}}_{ 2} }}  相似文献   
47.
Bulk Cd adsorption isotherm experiments, thermodynamic equilibrium modeling, and Cd K edge EXAFS were used to constrain the mechanisms of proton and Cd adsorption to bacterial cells of the commonly occurring Gram-positive and Gram-negative bacteria, Bacillus subtilis and Shewanella oneidensis, respectively. Potentiometric titrations were used to characterize the functional group reactivity of the S. oneidensis cells, and we model the titration data using the same type of non-electrostatic surface complexation approach as was applied to titrations of B. subtilis suspensions by Fein et al. (2005). Similar to the results for B. subtilis, the S. oneidensis cells exhibit buffering behavior from approximately pH 3-9 that requires the presence of four distinct sites, with pKa values of 3.3 ± 0.2, 4.8 ± 0.2, 6.7 ± 0.4, and 9.4 ± 0.5, and site concentrations of 8.9(±2.6) × 10−5, 1.3(±0.2) × 10−4, 5.9(±3.3) × 10−5, and 1.1(±0.6) × 10−4 moles/g bacteria (wet mass), respectively. The bulk Cd isotherm adsorption data for both species, conducted at pH 5.9 as a function of Cd concentration at a fixed biomass concentration, were best modeled by reactions with a Cd:site stoichiometry of 1:1. EXAFS data were collected for both bacterial species as a function of Cd concentration at pH 5.9 and 10 g/L bacteria. The EXAFS results show that the same types of binding sites are responsible for Cd sorption to both bacterial species at all Cd loadings tested (1-200 ppm). Carboxyl sites are responsible for the binding at intermediate Cd loadings. Phosphoryl ligands are more important than carboxyl ligands for Cd binding at high Cd loadings. For the lowest Cd loadings studied here, a sulfhydryl site was found to dominate the bound Cd budgets for both species, in addition to the carboxyl and phosphoryl sites that dominate the higher loadings. The EXAFS results suggest that both Gram-positive and Gram-negative bacterial cell walls have a low concentration of very high-affinity sulfhydryl sites which become masked by the more abundant carboxyl and phosphoryl sites at higher metal:bacteria ratios. This study demonstrates that metal loading plays a vital role in determining the important metal-binding reactions that occur on bacterial cell walls, and that high affinity, low-density sites can be revealed by spectroscopy of biomass samples. Such sites may control the fate and transport of metals in realistic geologic settings, where metal concentrations are low.  相似文献   
48.
Transition metal stable isotope signatures can be useful for tracing both natural and anthropogenic signals in the environment, but only if the mechanisms responsible for fractionation are understood. To investigate isotope fractionations due to electrochemistry (or redox processes), we examine the stable isotope behavior of iron and zinc during the reduction reaction  + 2e = Mmetal as a function of electrochemical driving force, temperature, and time. In all cases light isotopes are preferentially electroplated, following a mass-dependent law. Generally, the extent of fractionation is larger for higher temperatures and lower driving forces, and is roughly insensitive to amount of charge delivered. The maximum fractionations are δ56/54Fe = −4.0‰ and δ66/64Zn = −5.5‰, larger than observed fractionations in the natural environment and larger than those predicted due to changes in speciation. All the observed fractionation trends are interpreted in terms of three distinct processes that occur during an electrochemical reaction: mass transport to the electrode, chemical speciation changes adjacent to the electrode, and electron transfer at the electrode. We show that a large isotope effect adjacent the electrode surface arises from the charge-transfer kinetics, but this effect is attenuated in cases where diffusion of ions to the electrode surface becomes the rate-limiting step. Thus while a general increase in fractionation is observed with increasing temperature, this appears to be a result of thermally enhanced mass transport to the reacting interface rather than an isotope effect associated with the charge-transfer kinetics. This study demonstrates that laboratory experiments can successfully distinguish isotopic signatures arising from mass transport, chemical speciation, and electron transfer. Understanding how these processes fractionate metal isotopes under laboratory conditions is the first step towards discovering what role these processes play in fractionating metal isotopes in natural systems.  相似文献   
49.
In southern California, USA, wildfires may be an important source of mercury (Hg) to local watersheds. Hg levels and Hg accumulation rates were investigated in dated sediment cores from two southern California lakes, Big Bear Lake and Crystal Lake, located approximately 40-km apart. Between 1895 and 2006, fires were routinely minimized or suppressed around Big Bear Lake, while fires regularly subsumed the forest surrounding Crystal Lake. Mean Hg concentrations and mean Hg accumulation rates were significantly higher in Crystal Lake sediments compared to Big Bear Lake sediments (Hg levels: Crystal Lake 220 ± 93 ng g−1, Big Bear Lake 92 ± 26 ng g−1; Hg accumulation: Crystal Lake 790 ± 1,200 μg m−2 year−1, Big Bear 240 ± 54 μg m−2 year−1). In Crystal Lake, the ratio between post-1965 and pre-1865 Hg concentrations was 1.1, and several spikes in Hg levels occurred between 1910 and 1985. Given the remote location of the lake, the proximity of fires, and the lack of point sources within the region, these results suggested wildfires (rather than industrial sources) were a continuous source of Hg to Crystal Lake over the last 150 years.  相似文献   
50.
Páramo is a term used to describe tropical alpine vegetation between the continuous timberline and the snow line in the Northern Andes. Páramo environments provide important species habitat and ecosystem services. Changes in spatial extent of the páramo ecosystem at Pambamarca in the Central Cordillera of the northern Ecuadorian Andes were analysed using multi-temporal Landsat TM/ETM+ satellite data. The region suffered a loss of 1826.6 ha or 20% of the total area at a rate of 100 ha/annum during 1988-2007 period. It is found that permanent páramo cover decreased from 8350 ha in 1988 to 5864 ha in 2007 at a fairly constant rate(R2=0.94). This loss is attributed to expansion of commercial agriculture and floriculture in the valleys coupled with increased population pressure. Land at higher elevations has been cleared for small scale agriculture. Loss of the páramo ecosystem will exert a number of negative impacts on ecosystem services and livelihoods of the local population at Pambamarca.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号