首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   0篇
测绘学   1篇
大气科学   6篇
地球物理   15篇
地质学   33篇
海洋学   14篇
天文学   6篇
自然地理   5篇
  2020年   1篇
  2018年   1篇
  2016年   3篇
  2015年   3篇
  2013年   2篇
  2012年   1篇
  2011年   6篇
  2010年   5篇
  2009年   6篇
  2008年   3篇
  2007年   4篇
  2006年   5篇
  2005年   6篇
  2004年   5篇
  2003年   2篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
11.
12.
13.
Claystones are one of the types of geological formations that are considered for the isolation of radioactive wastes. The study of water transfer through these rocks comes up against a lot of difficulties. Among them is the problem of extracting representative samples of interstitial water from indurated claystones with very low water contents (usually less than 10% vol.). The vacuum distillation technique considered here for samples from the Tournemire site (Toarcian argillite formation), is one of the few usable techniques to extract water from this type of rock in order to perform stable isotope investigations on porewater. Tests have shown that the isotope water content is not only influenced by the yield of extraction and the temperature of distillation (as already known), but also by the rain size and the contact time between the crushed sample and the atmosphere. This affects particularly18O data.The first isotopic results on the Tournemire claystones suggest a meteoric origin for its interstitial water. Data show a depletion in heavy isotopes with respect to present day meteoric water, that could suggest a recharge under climatic conditions cooler than at present. A clear link appears between the isotope contents of water and the structural context: interstitial waters of rock samples taken in the fractured zone of the massif seem to have been affected by a secondary process (evaporation or water-rock exchange) leading to the enrichment in heavy isotopes.  相似文献   
14.
15.
The cartography of erosion risk is mainly based on the development of models, which evaluate in a qualitative and quantitative manner the physical reproduction of the erosion processes (CORINE, EHU, INRA). These models are mainly semi‐quantitative but can be physically based and spatially distributed (the Pan‐European Soil Erosion Risk Assessment, PESERA). They are characterized by their simplicity and their applicability potential at large temporal and spatial scales. In developing our model SCALES (Spatialisation d'éChelle fine de l'ALéa Erosion des Sols/large‐scale assessment and mapping model of soil erosion hazard), we had in mind several objectives: (1) to map soil erosion at a regional scale with the guarantee of a large accuracy on the local level, (2) to envisage an applicability of the model in European oceanic areas, (3) to focus the erosion hazard estimation on the level of source areas (on‐site erosion), which are the agricultural parcels, (4) to take into account the weight of the temporality of agricultural practices (land‐use concept). Because of these objectives, the nature of variables, which characterize the erosion factors and because of its structure, SCALES differs from other models. Tested in Basse‐Normandie (Calvados 5500 km2) SCALES reveals a strong predisposition of the study area to the soil erosion which should require to be expressed in a wet year. Apart from an internal validation, we tried an intermediate one by comparing our results with those from INRA and PESERA. It appeared that these models under estimate medium erosion levels and differ in the spatial localization of areas with the highest erosion risks. SCALES underlines here the limitations in the use of pedo‐transfer functions and the interpolation of input data with a low resolution. One must not forget however that these models are mainly focused on an interregional comparative approach. Therefore the comparison of SCALES data with those of the INRA and PESERA models cannot result on a convincing validation of our model. For the moment the validation is based on the opinion of local experts, who agree with the qualitative indications delivered by our cartography. An external validation of SCALES is foreseen, which will be based on a thorough inventory of erosion signals in areas with different hazard levels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
16.
Brines in Cambrian sandstones and Ordovician dolostones of the St-Lawrence Lowlands at Bécancour, Québec, Canada were sampled for analysis of all stable noble gases in order to trace their origin and migration path, in addition to quantifying their residence time. Major ion chemistry indicates that the brines are of Na-Ca-Cl type, possibly derived from halite dissolution. 87Sr/86Sr ratios and Ca excess indicate prolonged interactions with silicate rocks of the Proterozoic Grenville basement or the Cambrian Potsdam sandstone. The brines constrain a 2-3% contribution of mantle 3He and large amounts of nucleogenic 21Ne and 38Ar and radiogenic 4He and 40Ar. 4He/40Ar and 21Ne/40Ar ratios, corrected for mass fractionation during incomplete brine degassing, are identical to their production ratios in rocks. The source of salinity (halite dissolution), plus the occurrence of large amounts of 40Ar in brines constrain the residence time of Bécancour brines as being older than the Cretaceous. Evaporites in the St-Lawrence Lowlands likely existed only during Devonian-Silurian time. Brines might result from infiltration of Devonian water leaching halite, penetrating into or below the deeper Cambrian-Ordovician aquifers. During the Devonian, the basin reached temperatures higher than 250 °C, allowing for thermal maturation of local gas-prone source rocks (Utica shales) and possibly facilitating the release of radiogenic 40Ar into the brines. The last thermal event that could have facilitated the liberation of 40Ar into fluids and contributed to mantle 3He is the Cretaceous Monteregian Hills magmatic episode. For residence times younger than the Cretaceous, it is difficult to find an appropriate source of salinity and of nucleogenic/radiogenic gases to the Bécancour brines.  相似文献   
17.
18.
Classification image processing is based mainly upon spectral features but this information alone is inadequate for drawing comprehensive maps or reliably distinguishing lithological or structural targets, especially in vegetation-covered areas. It is therefore of interest to explore an approach in which subtle features of the image are matched with field data in a variety of parameters either measured or assessed qualitatively. This approach is necessarily multidisciplinary, the three basic aspects being geomorphological, botanical and geological.The Cévennes massif, in southern France, with its sedimentary margins was selected as a test area, having both varied geology, giving a variety of landscapes, and a range of climatic zones, from Mediterranean to sub-Alpine.The present work is distinguished by its use of the landscape unit, which is rarely considered in geology. Landscapes units are recognized and defined, and the spectral homogeneity of the units is then assessed. They are combined with satellite and other data in order to improve the digital processing for geological purposes.The parameters characterising each landscape unit define the various elements contributing to the landscape, the most important of which are morphology, vegetation and geology, and their interactions. Our results using these parameters show the interest of the management of both the satellite (SPOT in this case) and non-satellite (exogenous) data.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号