首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   868篇
  免费   50篇
  国内免费   6篇
测绘学   30篇
大气科学   64篇
地球物理   231篇
地质学   289篇
海洋学   87篇
天文学   96篇
综合类   2篇
自然地理   125篇
  2024年   2篇
  2023年   5篇
  2022年   7篇
  2021年   22篇
  2020年   25篇
  2019年   23篇
  2018年   33篇
  2017年   37篇
  2016年   44篇
  2015年   26篇
  2014年   53篇
  2013年   45篇
  2012年   44篇
  2011年   87篇
  2010年   43篇
  2009年   50篇
  2008年   51篇
  2007年   52篇
  2006年   33篇
  2005年   33篇
  2004年   41篇
  2003年   32篇
  2002年   22篇
  2001年   8篇
  2000年   14篇
  1999年   8篇
  1998年   7篇
  1997年   8篇
  1996年   4篇
  1995年   11篇
  1994年   5篇
  1993年   4篇
  1992年   7篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   8篇
  1987年   2篇
  1986年   5篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1979年   2篇
  1977年   1篇
  1974年   2篇
  1970年   1篇
  1967年   1篇
排序方式: 共有924条查询结果,搜索用时 15 毫秒
61.
62.
Water stored in soils, in part, controls vegetation productivity and the duration of growing seasons in wildland ecosystems. Soil water is the dynamic product of precipitation, evapotranspiration and soil properties, all of which vary across complex terrain making it challenging to decipher the specific controls that soil water has on growing season dynamics. We assess how soil water use by plants varies across elevations and aspects in the Dry Creek Experimental Watershed in southwest Idaho, USA, a mountainous, semiarid catchment that spans low elevation rain to high elevation snow regimes. We compare trends in soil water and soil temperature with corresponding trends in insolation, precipitation and vegetation productivity, and we observe trends in the timing, rate and duration of soil water extraction by plants across ranges in elevation and aspect. The initiation of growth-supporting conditions, indicated by soil warming, occurs 58 days earlier at lower, compared with higher, elevations. However, growth-supporting conditions also end earlier at lower elevations due to the onset of soil water depletion 29 days earlier than at higher elevations. A corresponding shift in peak NDVI timing occurs 61 days earlier at lower elevations. Differences in timing also occur with aspect, with most threshold timings varying by 14–30 days for paired north- and south-facing sites at similar elevations. While net primary productivity nearly doubles at higher elevations, the duration of the warm-wet period of active water use does not vary systematically with elevation. Instead, the greater ecosystem productivity is related to increased soil water storage capacity, which supports faster soil water use and growth rates near the summer solstice and peak insolation. Larger soil water storage does not appear to extend the duration of the growing season, but rather supports higher growing season intensity when wet-warm soil conditions align with high insolation. These observations highlight the influence of soil water storage capacity in dictating ecological function in these semiarid steppe climatic regimes.  相似文献   
63.
Over this one-year study, the variations of inorganic As species were examined monthly along the salinity gradient of the Penzé estuary (NW France) in relation with different biogeochemical parameters. In most cases, dissolved As exhibited a non-conservative behaviour which resulted from the competition between two major processes. In the upstream section of the estuary, a strong input of both total inorganic As and As(III) occurred. Then, the removal of the same species, under precipitation of iron oxides/oxyhydroxides, was observed in the low-salinity range (S < 10). Using our experimental data, the fluxes of the various As species were estimated for the first time in estuarine waters. Inputs from the river were mainly constituted of particulate As (∼70%). Conversely, dissolved species were predominant in the net fluxes (∼65%) and As(III) accounted for ∼15% of the dissolved net flux.  相似文献   
64.
Infrared spectra from the Spitzer Space Telescope ( SSC ) of many debris discs are well fit with a single blackbody temperature which suggest clearings within the disc. We assume that clearings are caused by orbital instability in multiple planet systems with similar configurations to our own. These planets remove dust-generating planetesimal belts as well as dust generated by the outer disc that is scattered or drifts into the clearing. From numerical integrations, we estimate a minimum planet spacing required for orbital instability (and so planetesimal and dust removal) as a function of system age and planet mass. We estimate that a 108 yr old debris disc with a dust disc edge at a radius of 50 au hosted by an A star must contain approximately five Neptune mass planets between the clearing radius and the iceline in order to remove all primordial objects within it. We infer that known debris disc systems contain at least a fifth of a Jupiter mass in massive planets. The number of planets and spacing required is insensitive to the assumed planet mass. However, an order of magnitude higher total mass in planets could reside in these systems if the planets are more massive.  相似文献   
65.
Pre-Cassini images of Saturn's small icy moon Enceladus provided the first indication that this satellite has undergone extensive resurfacing and tectonism. Data returned by the Cassini spacecraft have proven Enceladus to be one of the most geologically dynamic bodies in the Solar System. Given that the diameter of Enceladus is only about 500 km, this is a surprising discovery and has made Enceladus an object of much interest. Determining Enceladus' interior structure is key to understanding its current activity. Here we use the mean density of Enceladus (as determined by the Cassini mission to Saturn), Cassini observations of endogenic activity on Enceladus, and numerical simulations of Enceladus' thermal evolution to infer that this satellite is most likely a differentiated body with a large rock-metal core of radius about 150 to 170 km surrounded by a liquid water-ice shell. With a silicate mass fraction of 50% or more, long-term radiogenic heating alone might melt most of the ice in a homogeneous Enceladus after about 500 Myr assuming an initial accretion temperature of about 200 K, no subsolidus convection of the ice, and either a surface temperature higher than at present or a porous, insulating surface. Short-lived radioactivity, e.g., the decay of 26Al, would melt all of the ice and differentiate Enceladus within a few million years of accretion assuming formation of Enceladus at a propitious time prior to the decay of 26Al. Long-lived radioactivity facilitates tidal heating as a source of energy for differentiation by warming the ice in Enceladus so that tidal deformation can become effective. This could explain the difference between Enceladus and Mimas. Mimas, with only a small rock fraction, has experienced relatively little long-term radiogenic heating; it has remained cold and stiff and less susceptible to tidal heating despite its proximity to Saturn and larger eccentricity than Enceladus. It is shown that the shape of Enceladus is not that of a body in hydrostatic equilibrium at its present orbital location and rotation rate. The present shape could be an equilibrium shape corresponding to a time when Enceladus was closer to Saturn and spinning more rapidly, or more likely, to a time when Enceladus was spinning more rapidly at its present orbital location. A liquid water layer on Enceladus is a possible source for the plume in the south polar region assuming the survivability of such a layer to the present. These results could place Enceladus in a category similar to the large satellites of Jupiter, with the core having a rock-metal composition similar to Io, and with a deep overlying ice shell similar to Europa and Ganymede. Indeed, the moment of inertia factor of a differentiated Enceladus, C/MR2, could be as small as that of Ganymede, about 0.31.  相似文献   
66.
The Irish Sea, like many marine areas, is threatened by anthropogenic activities. In particular the Pisces Reef system, a series of smothered rocky reefs are subject to fishing pressures as a result of their position within a Nephrops norvegicus fishery. In an area of sediment deposition and retention the reefs modify the environment by increasing the energy of near-bottom currents which results in localised scouring. This is the first study to attempt to characterise and investigate the ecological functioning of the Pisces Reef system. A multidisciplinary approach was essential for accurate investigation of the area. To facilitate more effective management of the benthic habitats of the Reef system, this study integrates acoustic, seismic, grab sampling and video ground-truthing methods for benthic habitat discrimination. Orientation of the scour hollows also suggest that seabed features could be used to infer dominant flow regimes such as the Irish Sea Gyre. The data revealed significant geology–benthos relationships. A unique biotope was described for the reef habitat and it was demonstrated that scouring may influence community composition through disturbance mechanisms. This study provides preliminary information required for management of a unique habitat within a uniform region.  相似文献   
67.
68.
Medium-term prediction of sediment transport and morphological behaviour in the coastal zone is becoming increasingly important as a result of human interference and changing environmental conditions. The interaction of waves and tides is shown to play a pivotal role in the net (annual) sediment transport and morphodynamics of the coastal zone. The Telemac Modelling System has been applied to the Dyfi Estuary and neighbouring coastline, mid Wales, to recreate the annual wave–current conditions and the resulting sediment fluxes. ‘Input reduction’ methods have been required to produce realistic schematisations of events in practical computation times. A field campaign carried out in 2006 provided data for validation of the flow module (Telemac-2D) and also observations to verify the patterns predicted by the wave module (Tomawac). To improve model accuracy refinements were implemented with regard to the sand transport formulation used in the sand transport module (Sisyphe). Here, a parameterisation of the results from the UWB 1DV sand transport ‘research’ model, for the conditions in the Dyfi Estuary, has been introduced, allowing Sisyphe to provide greater realism in the morphological predictions. The model predictions are presented along with a discussion of the success/failure and limitations of the modelling methods applied.  相似文献   
69.
Soil development parameters include a wide variety of morphological, chemical, and mineralogical parameters, but some of the best indicators of time and surface stability are derived from field morphology. Over long time-spans, the most common time function for soil development is exponential or logarithmic, in which rates decrease with increasing age. Over shorter time-spans in semi-arid and moister climates, Holocene and Pleistocene soil development functions appear as linear segments, with Holocene rates about 10 to 50 times those of Pleistocene rates. In contrast to significant temporal variation in rates, geographical variation in rates within (a) the southern Great Basin and (b) the east Central Valley of California is on the order of 2 or 3 times. When comparing soil development indices of the semi-arid Great Basin to those of moister central California, Holocene rates are similar, but Pleistocene rates are more than 10 times slower in the Great Basin. In a range of climatic settings, the reasons for declining rates over time are several and are complexly related to erosional history, fluxes in water and dust related to climatic changes, rates of primary mineral dissolution, and intrinsic soil processes.  相似文献   
70.
Northwest Africa (NWA) 5232, an 18.5 kg polymict eucrite, comprises eucritic and exogenic CM carbonaceous chondrite clasts within a clastic matrix. Basaltic clasts are the most abundant eucritic clast type and show a range of textures and grain size, from subophitic to granoblastic. Other eucritic clast types present include cumulate (high‐En pyroxene), pyroxene‐lath, olivine rich with symplectite intergrowths as a break‐down product of a quickly cooled Fe‐rich metastable pyroxferroite, and breccia (fragments of a previously consolidated breccia) clasts. A variable cooling rate and degree of thermal metamorphism, followed by a complex brecciation history, can be inferred for the clasts based on clast rounding, crystallization (and recrystallization) textures, pyroxene major and minor element compositions, and pyroxene exsolution. The range in δ18O of clasts and matrix of NWA 5232 reflects its origin as a breccia of mixed clasts dominated by eucritic lithologies. The oxygen isotopic compositions of the carbonaceous chondrite clasts identify them as belonging to CM group and indicate that these clasts experienced a low degree of aqueous alteration while part of their parent body. The complex evolutionary history of NWA 5232 implies that large‐scale impact excavation and mixing was an active process on the surface of the HED parent body, likely 4 Vesta.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号