首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   660篇
  免费   43篇
  国内免费   4篇
测绘学   19篇
大气科学   46篇
地球物理   171篇
地质学   229篇
海洋学   78篇
天文学   52篇
综合类   2篇
自然地理   110篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   14篇
  2020年   18篇
  2019年   19篇
  2018年   28篇
  2017年   34篇
  2016年   31篇
  2015年   26篇
  2014年   38篇
  2013年   35篇
  2012年   39篇
  2011年   68篇
  2010年   36篇
  2009年   37篇
  2008年   37篇
  2007年   37篇
  2006年   25篇
  2005年   26篇
  2004年   32篇
  2003年   28篇
  2002年   15篇
  2001年   6篇
  2000年   9篇
  1999年   8篇
  1998年   4篇
  1997年   5篇
  1996年   2篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   7篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1967年   1篇
排序方式: 共有707条查询结果,搜索用时 78 毫秒
91.
92.
Enhanced production of unconventional hydrocarbons in the United States has driven interest in natural gas development globally, but simultaneously raised concerns regarding water quantity and quality impacts associated with hydrocarbon extraction. We conducted a pre‐development assessment of groundwater geochemistry in the critically water‐restricted Karoo Basin, South Africa. Twenty‐two springs and groundwater samples were analyzed for major dissolved ions, trace elements, water stable isotopes, strontium and boron isotopes, hydrocarbons and helium composition. The data revealed three end‐members: a deep, saline groundwater with a sodium‐chloride composition, an old, deep freshwater with a sodium‐bicarbonate‐chloride composition and a shallow, calcium‐bicarbonate freshwater. In a few cases, we identified direct mixing of the deep saline water and shallow groundwater. Stable water isotopes indicate that the shallow groundwater was controlled by evaporation in arid conditions, while the saline waters were diluted by apparently fossil meteoric water originated under wetter climatic conditions. These geochemical and isotopic data, in combination with elevated helium levels, suggest that exogenous fluids are the source of the saline groundwater and originated from remnant seawater prior to dilution by old meteoric water combined with further modification by water‐rock interactions. Samples with elevated methane concentrations (>14 ccSTP/kg) were strongly associated with the sodium‐chloride water located near dolerite intrusions, which likely provide a preferential pathway for vertical migration of deeply sourced hydrocarbon‐rich saline waters to the surface. This pre‐drill evaluation indicates that the natural migration of methane‐ and salt‐rich waters provides a source of geogenic contamination to shallow aquifers prior to shale gas development in the Karoo Basin.  相似文献   
93.
94.
The evolution of volcanic landscapes and their landslide potential are both dependent upon the weathering of layered volcanic rock sequences. We characterize critical zone structure using shallow seismic Vp and Vs profiles and vertical exposures of rock across a basaltic climosequence on Kohala peninsula, Hawai’i, and exploit the dramatic gradient in mean annual precipitation (MAP) across the peninsula as a proxy for weathering intensity. Seismic velocity increases rapidly with depth and the velocity–depth gradient is uniform across three sites with 500–600 mm/yr MAP, where the transition to unaltered bedrock occurs at a depth of 4 to 10 m. In contrast, velocity increases with depth less rapidly at wetter sites, but this gradient remains constant across increasing MAP from 1000 to 3000 mm/yr and the transition to unaltered bedrock is near the maximum depth of investigation (15–25 m). In detail, the profiles of seismic velocity and of weathering at wet sites are nowhere monotonic functions of depth. The uniform average velocity gradient and the greater depths of low velocities may be explained by the averaging of velocities over intercalated highly weathered sites with less weathered layers at sites where MAP > 1000 mm/yr. Hence, the main effect of climate is not the progressive deepening of a near‐surface altered layer, but rather the rapid weathering of high permeability zones within rock subjected to precipitation greater than ~1000 mm/yr. Although weathering suggests mechanical weakening, the nearly horizontal orientation of alternating weathered and unweathered horizons with respect to topography also plays a role in the slope stability of these heterogeneous rock masses. We speculate that where steep, rapidly evolving hillslopes exist, the sub‐horizontal orientation of weak/strong horizons allows such sites to remain nearly as strong as their less weathered counterparts at drier sites, as is exemplified by the 50°–60° slopes maintained in the amphitheater canyons on the northwest flank of the island. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
95.
Fusion crusts form during the atmospheric entry heating of meteorites and preserve a record of the conditions that occurred during deceleration in the atmosphere. The fusion crust of the Winchcombe meteorite closely resembles that of other stony meteorites, and in particular CM2 chondrites, since it is dominated by olivine phenocrysts set in a glassy mesostasis with magnetite, and is highly vesicular. Dehydration cracks are unusually abundant in Winchcombe. Failure of this weak layer is an additional ablation mechanism to produce large numbers of particles during deceleration, consistent with the observation of pulses of plasma in videos of the Winchcombe fireball. Calving events might provide an observable phenomenon related to meteorites that are particularly susceptible to dehydration. Oscillatory zoning is observed within olivine phenocrysts in the fusion crust, in contrast to other meteorites, perhaps owing to temperature fluctuations resulting from calving events. Magnetite monolayers are found in the crust, and have also not been previously reported, and form discontinuous strata. These features grade into magnetite rims formed on the external surface of the crust and suggest the trapping of surface magnetite by collapse of melt. Magnetite monolayers may be a feature of meteorites that undergo significant degassing. Silicate warts with dendritic textures were observed and are suggested to be droplets ablated from another stone in the shower. They, therefore, represent the first evidence for intershower transfer of ablation materials and are consistent with the other evidence in the Winchcombe meteorite for unusually intense gas loss and ablation, despite its low entry velocity.  相似文献   
96.
The size distributions of sediment delivered from hillslopes to rivers profoundly influence river morphodynamics, including river incision into bedrock and the quality of aquatic habitat. Yet little is known about the factors that influence size distributions of sediment produced by weathering on hillslopes. We present results of a field study of hillslope sediment size distributions at Inyo Creek, a steep catchment in granitic bedrock of the Sierra Nevada, USA. Particles sampled near the base of hillslopes, adjacent to the trunk stream, show a pronounced decrease in sediment size with decreasing sample elevation across all but the coarsest size classes. Measured size distributions become increasingly bimodal with decreasing elevation, exhibiting a coarse, bouldery mode that does not change with elevation and a more abundant finer mode that shifts from cobbles at the highest elevations to gravel at mid elevations and finally to sand at low elevations. We interpret these altitudinal variations in hillslope sediment size to reflect changes in physical, chemical, and biological weathering that can be explained by the catchment's strong altitudinal gradients in topography, climate, and vegetation cover. Because elevation and travel distance to the outlet are closely coupled, the altitudinal trends in sediment size produce a systematic decrease in sediment size along hillslopes parallel to the trunk stream. We refer to this phenomenon as ‘downvalley fining.’ Forward modeling shows that downvalley fining of hillslope sediment is necessary for downstream fining of the long-term average flux of coarse sediment in mountain landscapes where hillslopes and channels are coupled and long-term net sediment deposition is negligible. The model also shows that abrasion plays a secondary role in downstream fining of coarse sediment flux but plays a dominant role in partitioning between the bedload and suspended load. Patterns observed at Inyo Creek may be widespread in mountain ranges around the world. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
97.
The impacts of unconventional oil and gas production via high-volume hydraulic fracturing (HVHF) on water resources, such as water use, groundwater and surface water contamination, and disposal of produced waters, have received a great deal of attention over the past decade. Conventional oil and gas production (e.g., enhanced oil recovery [EOR]), which has been occurring for more than a century in some areas of North America, shares the same environmental concerns, but has received comparatively little attention. Here, we compare the amount of produced water versus saltwater disposal (SWD) and injection for EOR in several prolific hydrocarbon producing regions in the United States and Canada. The total volume of saline and fresh to brackish water injected into depleted oil fields and nonproductive formations is greater than the total volume of produced waters in most regions. The addition of fresh to brackish “makeup” water for EOR may account for the net gain of subsurface water. The total amount of water injected and produced for conventional oil and gas production is greater than that associated with HVHF and unconventional oil and gas production by well over a factor of 10. Reservoir pressure increases from EOR and SWD wells are low compared to injection of fluids for HVHF, however, the longer duration of injections could allow for greater solute transport distances and potential for contamination. Attention should be refocused from the subsurface environmental impacts of HVHF to the oil and gas industry as a whole.  相似文献   
98.
To predict the impacts of climate change, a better understanding is needed of the foundation species that build and maintain biogenic ecosystems. Spartina alterniflora Loisel (smooth cordgrass) is the dominant salt marsh-building plant along the US Atlantic coast. It maintains salt marsh elevation relative to sea level by the accumulation of aboveground biomass, which promotes sediment deposition and belowground biomass, which accretes as peat. Peat accumulation is particularly important in elevation maintenance at high latitudes where sediment supply tends to be limited. Latitudinal variation in S. alterniflora growth was quantified in eight salt marshes from Massachusetts to South Carolina. The hypothesis that allocation to aboveground and belowground biomass is phenotypically plastic was tested with transplant experiments among a subset of salt marshes along this gradient. Reciprocal transplants revealed that northern S. alterniflora decreased allocation to belowground biomass when grown in the south. Some northern plants also died when moved south, suggesting that northern S. alterniflora may be stressed by future warming. Southern plants that were moved north showed phenotypic plasticity in biomass allocation, but no mortality. Belowground biomass also decomposed more quickly in southern marshes. Our results suggest that warming will lead northern S. alterniflora to decrease belowground allocation and that belowground biomass will decompose more quickly, thus decreasing peat accumulation. Gradual temperature increases may allow for adaptation and acclimation, but our results suggest that warming will lower the ability of salt marshes to withstand sea-level rise.  相似文献   
99.
Delineation of contaminant sources is vital for successful groundwater and soil remediation. With reliable source information, remediation time and cost can be dramatically reduced. An optimal contamination source search strategy incorporating Monte Carlo method, Kalman filtering and fuzzy set theory was applied to a contaminated site in Nanjing to define suspected multiple DNAPL source locations. Using the available nine sample data, the algorithm identified sources #1 and #4 as true sources, and sources #5 and #6 as false ones. The algorithm results for sources #2 and #3 were inconclusive. Three numerical experiments based on specific site conditions were then designed and conducted to determine the influencing factors on the algorithm’s convergence in sources #2 and #3. The numerical experiments tested the effect of multiple sources, the effect of the sources location in relation to the groundwater flow direction and the effect of a low permeability field on the convergence of the algorithm. Based on the numerical experiments and an understanding of the manufacturing site operations, sources #2 and #3 are likely to be true sources. Their moderate weights have been stabilized due to the existence of multiple true sources and the scarcity of informative sampling data, caused by the low permeability field. The moderate weight value of source #3 also includes a contribution from an overlapping plume caused by the sources’ parallel-to-flow layout pattern. It can be concluded that the algorithm works best for high permeability sites where potential source locations are scattered and source location patterns are orthogonal to the groundwater flow.  相似文献   
100.
Since cuspate coastlines are especially sensitive to changes in wave climate, they serve as potential indicators of initial responses to changing wave conditions. Previous work demonstrates that Cape Hatteras and Cape Lookout, North Carolina, which are largely unaffected by shoreline stabilization efforts, have become increasingly asymmetric over the past 30 years, consistent with model predictions for coastline response to increases in Atlantic Ocean summer wave heights and resulting changes in the distribution of wave‐approach angles. Historic and recent shoreline change observations for Cape Fear, North Carolina, and model simulations of coastline response to an increasingly asymmetric wave climate in the presence of beach nourishment, produce comparable differences in shoreline change rates in response to changes in wave climate. Results suggest that the effect of beach nourishment is to compensate for – and therefore to mask – natural responses to wave climate change that might otherwise be discernible in patterns of shoreline change alone. Therefore, this case study suggests that the effects of wave climate change on human‐modified coastlines may be detectable in the spatial and temporal patterns of shoreline stabilization activities. Similar analyses of cuspate features in areas where the change in wave climate is less pronounced (i.e. Fishing Point, Maryland/Virginia) and where local geology appears to exert control on coastline shape (i.e. Cape Canaveral, Florida), suggest that changes in shoreline configuration that may be arising from shifting wave climate are currently limited to sandy wave‐dominated coastlines where the change in wave climate has been most pronounced. However, if hurricane‐generated wave heights continue to increase, large‐scale shifts in patterns of erosion and accretion will likely extend beyond sensitive cuspate features as the larger‐scale coastline shape comes into equilibrium with changing wave conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号