首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   428篇
  免费   30篇
  国内免费   13篇
测绘学   12篇
大气科学   55篇
地球物理   96篇
地质学   133篇
海洋学   39篇
天文学   81篇
自然地理   55篇
  2024年   2篇
  2023年   3篇
  2022年   3篇
  2021年   14篇
  2020年   10篇
  2019年   15篇
  2018年   16篇
  2017年   16篇
  2016年   20篇
  2015年   22篇
  2014年   20篇
  2013年   24篇
  2012年   17篇
  2011年   30篇
  2010年   25篇
  2009年   30篇
  2008年   16篇
  2007年   29篇
  2006年   16篇
  2005年   19篇
  2004年   12篇
  2003年   15篇
  2002年   10篇
  2001年   9篇
  2000年   11篇
  1999年   12篇
  1998年   7篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   7篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   4篇
  1988年   3篇
  1986年   3篇
  1985年   4篇
  1983年   3篇
  1982年   4篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1969年   1篇
排序方式: 共有471条查询结果,搜索用时 187 毫秒
151.
This paper provides a new deglacial chronology for retreat of the Irish Ice Sheet from the continental shelf of western Ireland to the adjoining coastline, a region where the timing and drivers of ice recession have never been fully constrained. Previous work suggests maximum ice-sheet extent on the outer western continental shelf occurred at ~26–24 cal. ka BP with the initial retreat of the ice marked by the production of grounding-zone wedges between 23–21.1 cal. ka BP. However, the timing and rate of ice-sheet retreat from the inner continental shelf to the present coast are largely unknown. This paper reports 31 new terrestrial cosmogenic nuclide (TCN) ages from erratics and ice-moulded bedrock and three new optically stimulated luminescence (OSL) ages on deglacial outwash. The TCN data constrain deglaciation of the near coast (Aran Islands) to ~19.5–18.5 ka. This infers ice retreated rapidly from the mid-shelf after 21 ka, but the combined effects of bathymetric shallowing and pinning acted to stabilize the ice at the Aran Islands. However, marginal stability was short-lived, with multiple coastal sites along the Connemara/Galway coasts demonstrating ice recession under terrestrial conditions by 18.2–17. ka. This pattern of retreat continued as ice retreated eastward through inner Galway Bay by 16.5 ka. South of Galway, the Kilkee–Kilrush Moraine Complex and Scattery Island moraines point to late stage re-advances of the ice sheet into southern County Clare ~14.1–13.3 ka, but the large errors associated with the OSL ages make correlation with other regional re-advances difficult. It seems more likely that these moraines are the product of regional ice lobes adjusting to internal ice-sheet dynamics during deglaciation in the time window 17–16 ka.  相似文献   
152.
Preservation of organic matter in estuarine and coastal areas is an important process in the global carbon cycle. This paper presents bulk δ13C and C/N of organic matter from source to sink in the Pearl River catchment, delta and estuary, and discusses the applicability of δ13C and C/N as indicators for sources of organic matter in deltaic and estuarine sediments. In addition to the 91 surface sediment samples, other materials collected in this study cover the main sources of organic material to estuarine sediment. These are: terrestrial organic matter (TOM), including plants and soil samples from the catchment; estuarine and marine suspended particulate organic carbon (POC) from both summer and winter. Results show that the average δ13C of estuarine surface sediment increases from −25.0 ± 1.3‰ in the freshwater environment to −21.0 ± 0.2‰ in the marine environment, with C/N decreasing from 15.2 ± 3.3 to 6.8 ± 0.2. In the source areas, C3 plants have lower δ13C than C4 plants (−29.0 ± 1.8‰ and −13.1 ± 0.5‰ respectively). δ13C increases from −28.3 ± 0.8‰ in the forest soil to around −24.1‰ in both riverbank soil and mangrove soil due to increasing proportion of C4 grasses. The δ13CPOC increases from −27.6 ± 0.8‰ in the freshwater areas to −22.4 ± 0.5‰ in the marine-brackish-water areas in winter, and ranges between −24.0‰ in freshwater areas and −25.4‰ in brackish-water areas in summer. Comparison of the δ13C and C/N between the sources and sink indicates a weakening TOM and freshwater POC input in the surface sedimentary organic matter seawards, and a strengthening contribution from the marine organic matter. Thus we suggest that bulk organic δ13C and C/N analysis can be used to indicate sources of sedimentary organic matter in estuarine environments. Organic carbon in surface sediments derived from anthropogenic sources such as human waste and organic pollutants from industrial and agricultural activities accounts for less than 10% of the total organic carbon (TOC). Although results also indicate elevated δ13C of sedimentary organic matter due to some agricultural products such as sugarcane, C3 plants are still the dominant vegetation type in this area, and the bulk organic δ13C and C/N is still an effective indicator for sources of organic matter in estuarine sediments.  相似文献   
153.
Regime shifts: Can ecological theory illuminate the mechanisms?   总被引:2,自引:0,他引:2  
“Regime shifts” are considered here to be low-frequency, high-amplitude changes in oceanic conditions that may be especially pronounced in biological variables and propagate through several trophic levels. Three different types of regime shift (smooth, abrupt and discontinuous) are identified on the basis of different patterns in the relationship between the response of an ecosystem variable (usually biotic) and some external forcing or condition (control variable). The smooth regime shift is represented by a quasi-linear relationship between the response and control variables. The abrupt regime shift exhibits a nonlinear relationship between the response and control variables, and the discontinuous regime shift is characterized by the trajectory of the response variable differing when the forcing variable increases compared to when it decreases (i.e., the occurrence of alternative “stable” states). Most often, oceanic regime shifts are identified from time series of biotic variables (often commercial fish), but this approach does not allow the identification of discontinuous regime shifts. Recognizing discontinuous regime shifts is, however, particularly important as evidence from terrestrial and freshwater ecosystems suggests that such regime shifts may not be immediately reversible. Based on a review of various generic classes of mathematical models, we conclude that regime shifts arise from the interaction between population processes and external forcing variables. The shift between ecosystem states can be caused by gradual, cumulative changes in the forcing variable(s) or it can be triggered by acute disturbances, either anthropogenic or natural. A protocol for diagnosing the type of regime shift encountered is described and applied to a data set on Georges Bank haddock, from which it is concluded that a discontinuous regime shift in the abundance of haddock may have occurred. It is acknowledged that few, if any, marine data are available to confirm the occurrence of discontinuous regime shifts in the ocean. Nevertheless, we argue that there is good theoretical evidence for their occurrence as well as some anecdotal evidence from data collection campaigns and that the possibility of their occurrence should be recognized in the development of natural resource management strategies.  相似文献   
154.
ARCHAEOPTERYX     
Jeremy Hall 《地学学报》1989,1(1):103-104
  相似文献   
155.
156.
157.
158.
 Early Cretaceous (146–115 Ma) magmatism in the region of Mt. Hermon, Northern Israel, is part of an extensive Mesozoic igneous province within the Levant associated with the evolution of the Neotethyan passive margin of Gondwana. The initial stages of activity were characterised by the emplacement of tholeiitic dykes (146–140 Ma) which were uplifted and eroded prior to the eruption of a sequence of alkali basalts, basanites and more differentiated alkaline lavas and pyroclastics from 127 to 120 Ma. The latest stages of activity (120–115 Ma) were highly explosive, resulting in the emplacement of diatreme breccias. Trace element and Sr-Nd-Pb isotope data for the most primitive Early Cretaceous mafic igneous rocks sampled suggest that they were derived by mixing of melts derived by variable degrees of partial melting of both garnet- and spinel-peridotite-facies mantle sources. Though isotopically heterogeneous, the source of the magmas has many similarities to that of HIMU oceanic island basalts. Earlier Liassic (200 Ma) transitional basalts and Neogene–Quaternary (15–0 Ma) alkali basalts erupted within northern Israel also have HIMU affinities. The petrogenesis of the Early Cretaceous and Cenozoic basalts is explained by partial melting of a lithospheric mantle protolith metasomatically enriched during the Liassic volcanic phase, which may be plume-related. Received: 23 July 1998 / Accepted: 6 December 1999  相似文献   
159.
There are few published seismic (P- and S-waves) properties for seafloor bedrocks. At low pressures (1 to 10 MPa), velocities and attenuations are determined mainly by open microcracks. At higher pressures, the microcracks close, and the velocities and attenuations depend primarily on the matrix porosity. We have investigated both the relationships between the acoustic, petrophysical, and geological properties of the rocks at 40 MPa pressure and the effect of microcracks on the acoustic properties at 10 MPa pressure. In this paper we discuss the former; the latter will be discussed separately. P- and S-wave velocity and attenuation measurements were carried out on a suite of seabed sedimentary and igneous rocks at effective pressures from 10 to 40 MPa at ultrasonic frequencies. The porosities and permeabilities of the rocks ranged from 0% to 32% and 0 to 110 mDarcy, respectively. Characterization of the rocks revealed that most of the sandstones have a substantial clay content (kaolinite, illite, and chlorite) and fractures. Most of the igneous rocks are chloritized. The seismic properties of the rocks are markedly lower than those of similar continental rocks because of the microporosity formed by the alteration of feldspars, micas, and mafic minerals to clays (e.g., chloritization of pyroxenes) and the corresponding reduction of the elastic moduli. The results of this study suggest that the values of velocities and quality factors used for ocean acoustic propagation models are lower than normally assumed.  相似文献   
160.
This paper describes an innovative method to characterise conduction parameters in geomaterials at the particle-scale. The technique is exemplified using 3D synthetic grain packing generated with discrete element approaches. This creates a geo-mechanically viable user-defined 3D granular image through which the particle skeleton and the corresponding pore network are constructed. Images are then imported into the finite element analyses to solve the governing equations of hydraulic and thermal conduction. Navier–Stokes equation is uniquely upscaled to Darcy’s law to assess hydraulic conductivity in soils, while a similar approach implements the Fourier equation to evaluate thermal conduction through grain chains and pore network. High performance computing is used to meet demanding numerical calculations of 3D meshed geometries. Packing density (i.e., porosity) and inter-particle contact areas are explored as variables to highlight the effects of pore volume and inter-particle contact condition in hydraulic and thermal conduction. This emerging technique allows not only characterising the macro-scale behaviour of conduction phenomena in soils but also quantifying and visualising the preferential and local conduction behaviour at the particle-scale. Laboratory measurements of hydraulic and thermal conductivities support numerically obtained results and validate the viability of the new methods used herein. This study introduces an alternative way to determine physical parameters of soils using emerging technology of rigorous numerical simulations in conjunction with 3D images, and to enable fundamental observation of particle-scale mechanisms of macro-scale manifestation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号