首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2574篇
  免费   163篇
  国内免费   9篇
测绘学   83篇
大气科学   191篇
地球物理   755篇
地质学   977篇
海洋学   221篇
天文学   316篇
综合类   18篇
自然地理   185篇
  2023年   10篇
  2022年   24篇
  2021年   56篇
  2020年   55篇
  2019年   57篇
  2018年   301篇
  2017年   207篇
  2016年   169篇
  2015年   93篇
  2014年   112篇
  2013年   145篇
  2012年   77篇
  2011年   154篇
  2010年   138篇
  2009年   168篇
  2008年   118篇
  2007年   87篇
  2006年   97篇
  2005年   88篇
  2004年   76篇
  2003年   77篇
  2002年   53篇
  2001年   31篇
  2000年   37篇
  1999年   23篇
  1998年   32篇
  1997年   22篇
  1996年   29篇
  1995年   17篇
  1994年   18篇
  1993年   16篇
  1992年   17篇
  1991年   10篇
  1990年   13篇
  1989年   9篇
  1988年   9篇
  1987年   8篇
  1986年   10篇
  1985年   8篇
  1984年   6篇
  1983年   8篇
  1982年   3篇
  1981年   8篇
  1980年   6篇
  1979年   4篇
  1976年   3篇
  1972年   3篇
  1970年   3篇
  1965年   4篇
  1950年   3篇
排序方式: 共有2746条查询结果,搜索用时 31 毫秒
11.
12.
13.
Monochromatic extinction coefficients at four wavelengths have been obtained over a period of more than two years at the Observatorio del Teide (Izaña Tenerife) using a full disc, direct sunlight, quadruple photometer devoted to the detection of integral luminosity oscillations of the Sun. The mean extinction coefficients (0.13 at 500 nm) show a seasonal variation of about 15%, the best atmospheric conditions being in winter and autumn. Moreover, in anyone day the extinction coefficient in the afternoon is always lower than the one in the morning by 7%. A one-year period fluctuation, with an amplitude of 0.035 mag, has been identified in the instrumental magnitudes outside the atmosphere, and is interpreted as the variation produced by the different Sun-Earth distance from winter to summer. Finally, the study made to detect periodic time fluctuations in both, Sun's magnitude and extinction coefficients, has given null results at levels of 0.04 and 1.8%, respectively.  相似文献   
14.
Quick-look assessments to identify optimal CO2 EOR storage sites   总被引:1,自引:0,他引:1  
A newly developed, multistage quick-look methodology allows for the efficient screening of an unmanageably large number of reservoirs to generate a workable set of sites that closely match the requirements for optimal CO2 enhanced oil recovery (EOR) storage. The objective of the study is to quickly identify miscible CO2 EOR candidates in areas that contain thousands of reservoirs and to estimate additional oil recovery and sequestration capacities of selected top options through dimensionless modeling and reservoir characterization. Quick-look assessments indicate that the CO2 EOR resource potential along the US Gulf Coast is 4.7 billion barrels, and CO2 sequestration capacity is 2.6 billion metric tons. In the first stage, oil reservoirs are screened and ranked in terms of technical and practical feasibility for miscible CO2 EOR. The second stage provides quick estimates of CO2 EOR potential and sequestration capacities. In the third stage, a dimensionless group model is applied to a selected set of sites to improve the estimates of oil recovery and storage potential using appropriate inputs for rock and fluid properties, disregarding reservoir architecture and sweep design. The fourth stage validates and refines the results by simulating flow in a model that describes the internal architecture and fluid distribution in the reservoir. The stated approach both saves time and allows more resources to be applied to the best candidate sites.  相似文献   
15.
Magnesium and strontium isotope signatures were determined during different seasons for the main rivers of the Moselle basin, northeastern France. This small basin is remarkable for its well-constrained and varied lithology on a small distance scale, and this is reflected in river water Sr isotope compositions. Upstream, where the Moselle River drains silicate rocks of the Vosges mountains, waters are characterized by relatively high 87Sr/86Sr ratios (0.7128-0.7174). In contrast, downstream of the city of Epinal where the Moselle River flows through carbonates and evaporites of the Lorraine plateau, 87Sr/86Sr ratios are lower, down to 0.70824.Magnesium in river waters draining silicates is systematically depleted in heavy isotopes (δ26Mg values range from −1.2 to −0.7‰) relative to the value presently estimated for the continental crust and a local diorite (−0.5‰). In comparison, δ26Mg values measured in soil samples are higher (∼0.0‰). This suggests that Mg isotope fractionation occurs during mineral leaching and/or formation of secondary clay minerals. On the Lorraine plateau, tributaries draining marls, carbonates and evaporites are characterized by low Ca/Mg (1.5-3.2) and low Ca/Sr (80-400) when compared to local carbonate rocks (Ca/Mg = 29-59; Ca/Sr = 370-2200), similar to other rivers draining carbonates. The most likely cause of the Mg and Sr excesses in these rivers is early thermodynamic saturation of groundwater with calcite relative to magnesite and strontianite as groundwater chemistry progressively evolves in the aquifer. δ26Mg of the dissolved phases of tributaries draining mainly carbonates and evaporites are relatively low and constant throughout the year (from −1.4‰ to −1.6‰ and from −1.2‰ to −1.4‰, respectively), within the range defined for the underlying rocks. Downstream of Epinal, the compositions of the Moselle River samples in a δ26Mg vs. 87Sr/86Sr diagram can be explained by mixing curves between silicate, carbonate and evaporite waters, with a significant contribution from the Vosgian silicate lithologies (>70%). Temporal co-variation between δ26Mg and 87Sr/86Sr for the Moselle River throughout year is also observed, and is consistent with a higher contribution from the Vosges mountains in winter, in terms of runoff and dissolved element flux. Overall, this study shows that Mg isotopes measured in waters, rocks and soils, coupled with other tracers such as Sr isotopes, could be used to better constrain riverine Mg sources, particularly if analytical uncertainties in Mg isotope measurements can be improved in order to perform more precise quantifications.  相似文献   
16.
This paper reviews the geochemical, isotopic (2H, 18O, 13C, 3H and 14C) and numerical modelling approaches to evaluate possible geological sources of the high pH (11.5)/Na–Cl/Ca–OH mineral waters from the Cabeço de Vide region (Central-Portugal). Water–rock interaction studies have greatly contributed to a conceptual hydrogeological circulation model of the Cabeço de Vide mineral waters, which was corroborated by numerical modelling approaches. The local shallow groundwaters belong to the Mg–HCO3 type, and are derived by interaction with the local serpentinized rocks. At depth, these type waters evolve into the high pH/Na–Cl/Ca–OH mineral waters of Cabeço de Vide spas, issuing from the intrusive contact between mafic/ultramafic rocks and an older carbonate sequence. The Cabeço de Vide mineral waters are supersaturated with respect to serpentine indicating that they may cause serpentinization. Magnesium silicate phases (brucite and serpentine) seem to control Mg concentrations in Cabeço de Vide mineral waters. Similar δ2H and δ18O suggest a common meteoric origin and that the Mg–HCO3 type waters have evolved towards Cabeço de Vide mineral waters. The reaction path simulations show that the progressive evolution of the Ca–HCO3 to Mg–HCO3 waters can be attributed to the interaction of meteoric waters with serpentinites. The sequential dissolution at CO2 (g) closed system conditions leads to the precipitation of calcite, magnesite, amorphous silica, chrysotile and brucite, indicating that the waters would be responsible for the serpentinization of fresh ultramafic rocks (dunites) present at depth. The apparent age of Cabeço de Vide mineral waters was determined as 2790 ± 40 a BP, on the basis of 14C and 13C values, which is in agreement with the 3H concentrations being below the detection limit.  相似文献   
17.
Quantitative sinkhole hazard assessments in karst areas allow calculation of the potential sinkhole risk and the performance of cost-benefit analyses. These estimations are of practical interest for planning, engineering, and insurance purposes. The sinkhole hazard assessments should include two components: the probability of occurrence of sinkholes (sinkholes/km2 year) and the severity of the sinkholes, which mainly refers to the subsidence mechanisms (progressive passive bending or catastrophic collapse) and the size of the sinkholes at the time of formation; a critical engineering design parameter. This requires the compilation of an exhaustive database on recent sinkholes, including information on the: (1) location, (2) chronology (precise date or age range), (3) size, and (4) subsidence mechanisms and rate. This work presents a hazard assessment from an alluvial evaporite karst area (0.81 km2) located in the periphery of the city of Zaragoza (Ebro River valley, NE Spain). Five sinkholes and four locations with features attributable to karstic subsidence where identified in an initial investigation phase providing a preliminary probability of occurrence of 0.14 sinkholes/km2 year (11.34% in annual probability). A trenching program conducted in a subsequent investigation phase allowed us to rule out the four probable sinkholes, reducing the probability of occurrence to 0.079 sinkholes/km2 year (6.4% in annual probability). The information on the severity indicates that collapse sinkholes 10–15 m in diameter may occur in the area. A detailed study of the deposits and deformational structures exposed by trenching in one of the sinkholes allowed us to infer a modern collapse sinkhole approximately 12 m in diameter and with a vertical throw of 8 m. This collapse structure is superimposed on a subsidence sinkhole around 80 m across that records at least 1.7 m of synsedimentary subsidence. Trenching, in combination with dating techniques, is proposed as a useful methodology to elucidate the origin of depressions with uncertain diagnosis and to gather practical information with predictive utility about particular sinkholes in alluvial karst settings: precise location, subsidence mechanisms and magnitude, and timing and rate of the subsidence episodes.  相似文献   
18.
Debris and mudflows are some of the main geological hazards in the mountain foothills of the Chilean capital city of Santiago. There, the risk of flows triggered in the basins of ravines that drain the range into the city increases with time due to the city growth. A multivariate statistical study based on the logistic regression method is presented. The model provides equations that allow the computation of combined meteorological triggering factors associated with a probability of rain-induced flow occurrence. Daily rainfall, accumulated rainfall and the snowfall level, traditionally considered as the relevant factors, are analysed for a 25-year period. The results show a strong relevance of the rainfall on the day of the flow event over the other factors. However, the relatively low probabilities returned for some real flow events suggest that the model does not capture all the significant variables and the problem is more complex than as it has been traditionally assumed, and further investigations are needed to develop predictive models of flow triggering.  相似文献   
19.
Summary The El Dorado Au-Cu deposit is located in an extensive intra-caldera zone of hydrothermal alteration affecting Upper Cretaceous andesites of the Los Elquinos Formation at La Serena (≈ 29°47′S Lat., 70°43′W Long., Chile). Quartz-sulfide veins of economic potential are hosted by N25W and N20E fault structures associated with quartz-illite alteration (+supergene kaolinite). The main ore minerals in the deposit are pyrite, chalcopyrite ± fahlore (As/(As + Sb): 0.06−0.98), with electrum, sphalerite, galena, bournonite-seligmanite (As/(As + Sb): 0.21−0.31), marcasite, pyrrhotite being accessory phases. Electrum, with an Ag content between 32 and 37 at.%, occurs interstitial to pyrite aggregates or along pyrite fractures. Pyrite commonly exhibits chemical zonation with some zones up to 1.96 at.% As. Electron probe microanalyses of pyrite indicate that As-rich zones do not exhibit detectable Au values. Fluid inclusion microthermometry shows homogenization temperatures between 130 and 352 °C and salinities between 1.6 and 6.9 wt.% NaCl eq. Isotope data for quartz, ankerite and phyllosilicates and estimated temperatures show that δ18O and δD for the hydrothermal fluids were between 3 and 10‰ and between −95 and −75‰, respectively. These results suggest the mineralizing fluids were a mixture of meteoric and magmatic waters. An epithermal intermediate-sulfidation model is proposed for the formation of the El Dorado deposit. Author’s present address: J. Carrillo-Rosúa, Dpto. de Didáctica de las Ciencias Experimentales, Universidad de Granada, Campus de Cartuja, 18071, Granada, Spain  相似文献   
20.
Résumé Les observations de deux stations situées à l'entrée de la vallée du Rhône et à l'intérieur de celle-ci permettent de déterminer dans une certaine mesure comment l'air froid pénètre dans cette longue vallée des Alpes suisses. L'accès se fait beaucoup plus souvent par-dessus les montagnes de l'Ouest ou du Nord que par le chenal de la vallée seulement.
Summary The observations of two stations at the entrance and in the interior of the Rhône valley allow to a certain degree to determine how cold air penetrates this long extended valley of the Swiss Alps. The influx of air takes much more frequently place over the mountains in the West and North than through the trough of the valley.

Zusammenfassung Die Beobachtungen von zwei Stationen, die am Eingang und im Inneren des Rhonetals gelegen sind, erlauben einigermaßen festzustellen, wie die Kaltluft in dieses langgestreckte Tal der Schweizeralpen eindringt. Dabei erfolgt der Luftzustrom viel häufiger über die Berge im W und N als ausschließlich durch die Talrinne.


Avec 1 Figure  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号