首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33419篇
  免费   774篇
  国内免费   304篇
测绘学   712篇
大气科学   2475篇
地球物理   6975篇
地质学   11764篇
海洋学   2800篇
天文学   7106篇
综合类   66篇
自然地理   2599篇
  2021年   240篇
  2020年   304篇
  2019年   318篇
  2018年   647篇
  2017年   613篇
  2016年   779篇
  2015年   615篇
  2014年   790篇
  2013年   1657篇
  2012年   963篇
  2011年   1303篇
  2010年   1131篇
  2009年   1532篇
  2008年   1350篇
  2007年   1306篇
  2006年   1275篇
  2005年   1035篇
  2004年   1095篇
  2003年   1037篇
  2002年   983篇
  2001年   851篇
  2000年   796篇
  1999年   697篇
  1998年   700篇
  1997年   673篇
  1996年   547篇
  1995年   525篇
  1994年   497篇
  1993年   442篇
  1992年   409篇
  1991年   374篇
  1990年   397篇
  1989年   361篇
  1988年   312篇
  1987年   423篇
  1986年   347篇
  1985年   495篇
  1984年   550篇
  1983年   504篇
  1982年   448篇
  1981年   430篇
  1980年   414篇
  1979年   399篇
  1978年   414篇
  1977年   355篇
  1976年   351篇
  1975年   354篇
  1974年   297篇
  1973年   317篇
  1972年   204篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
961.
962.
New field, geochronological, geochemical and biostratigraphical data indicate that the central and northern parts of the Cordillera Occidental of the Andes of Ecuador comprise two terranes. The older (Pallatanga) terrane consists of an early to late (?) Cretaceous oceanic plateau suite, late Cretaceous marine turbidites derived from an unknown basaltic to andesitic volcanic source, and a tectonic mélange of probable late Cretaceous age. The younger (Macuchi) terrane consists of a volcanosedimentary island arc sequence, derived from a basaltic to andesitic source. A previously unidentified, regionally important dextral shear zone named the Chimbo-Toachi shear zone separates the two terranes. Regional evidence suggests that the Pallatanga terrane was accreted to the continental margin (the already accreted Cordillera Real) in Campanian times, producing a tectonic mélange in the suture zone. The Macuchi terrane was accreted to the Pallatanga terrane along the Chimbo-Toachi shear zone during the late Eocene, probably in a dextral shear regime. The correlation of Cretaceous rocks and accretionary events in the Cordillera Occidental of Ecuador and Colombia remains problematical, but the late Eocene event is recognised along the northern Andean margin.  相似文献   
963.
Aeromagnetic signatures over the Edward VII Peninsula (E7) provide new insight into the largely ice-covered and unexplored eastern flank of the Ross Sea Rift (RSR). Positive anomalies, 10–40 km in wavelength and with amplitudes ranging from 50 to 500 nT could reveal buried Late Devonian(?)–Early Carboniferous Ford Granodiorite plutons. This is suggested by similar magnetic signature over exposed, coeval Admiralty Intrusives of the Transantarctic Mountains (TAM). Geochemical data from mid-Cretaceous Byrd Coast Granite, contact metamorphic effects on Swanson Formation and hornblende-bearing granitoid dredge samples strengthen this magnetic interpretation, making alternative explanations less probable. These magnetic anomalies over formerly adjacent TAM and western Marie Byrd Land (wMBL) terranes resemble signatures typically observed over magnetite-rich magmatic arc plutons. Shorter wavelength (5 km) 150 nT anomalies could speculatively mark mid-Cretaceous mafic dikes of the E7, similar to those exposed over the adjacent Ford Ranges. Anomalies with amplitudes of 100–360 nT over the Sulzberger Bay and at the margin of the Sulzberger Ice Shelf likely reveal mafic Late Cenozoic(?) volcanic rocks emplaced along linear rift fabric trends. Buried volcanic rock at the margin of the interpreted half-graben-like “Sulzberger Ice Shelf Block” is modelled in the Kizer Island area. The volcanic rock is marked by a coincident positive Bouguer gravity anomaly. Late Cenozoic volcanic rocks over the TAM, in the RSR, and beneath the West Antarctic Ice Sheet exhibit comparable magnetic anomaly signature reflecting regional West Antarctic Rift fabric. Interpreted mafic magmatism of the E7 is likely related to mid-Cretaceous and Late Cenozoic regional crustal extension and possible mantle plume activity over wMBL. Magnetic lineaments of the E7 are enhanced in maximum horizontal gradient of pseudo-gravity, vertical derivative and 3D Euler Deconvolution maps. Apparent vertical offsets in magnetic basement at the location of the lineaments and spatially associated mafic dikes and volcanic rocks result from 2.5D magnetic modelling. A rift-related fault origin for the magnetic lineaments, segmenting the E7 region into horst and graben blocks, is proposed by comparison with offshore seismic reflection, marine gravity, on-land gravity, radio-echo sounding, apatite fission track data and structural geology. The NNW magnetic lineament, which we interpret to mark the eastern RSR shoulder, forms the western margin of the “Alexandra Mountains horst”. This fundamental aeromagnetic feature lies on strike with the Colbeck Trough, a prominent NNW half-graben linked to Late Cretaceous(?) and Cenozoic(?) faulting in the eastern RSR. East–west and north–north–east to NE magnetic trends are also imaged. Magnetic trends, if interpreted as reflecting the signature of rift-related normal faults, would imply N–S to NE crustal extension followed by later northwest–southeast directed extension. NW–SE extension would be compatible with Cenozoic(?) oblique RSR rifting. Previous structural data from the Ford Ranges have, however, been interpreted to indicate that both Cretaceous and Cenozoic extensions were N–S to NE–SW directed.  相似文献   
964.
The transient dynamic response of saturated soil under suddenly applied normal and horizontal concentrated loading is studied in this paper. The behavior of saturated soil is governed by Biot's consolidation theory. The general solutions for Biot equations of equilibrium are derived in terms of displacements and variations of fluid volume, using Laplace–Hankel integral transforms. The solutions in the time domain can be evaluated by numerical inverse Laplace–Hankel transforms. Selected numerical results for displacements, stresses, and pore pressures are presented. Comparisons with existing closed-form solutions for the elastic half-space are made to confirm the accuracy of the present solutions. The solutions can be used to study a variety of transient wave propagation problems and dynamical interactions between saturated soil and structures.  相似文献   
965.
Basic properties of the mid-latitude traveling ionospheric disturbances (TIDs) during the maximum phase of a major magnetic storm of 6–8 April 2000 are shown. Total electron content (TEC) variations were studied by using data from GPS receivers located in Russia and Central Asia. The nightglow response to this storm at mesopause and termospheric altitudes was also measured by optical instruments FENIX located at the observatory of the Institute of Solar-Terrestrial Physics (51.9°N,103.0°E), and MORTI located at the observatory of the Institute of Ionosphere (43.2°N, 77.0°E). Observations of the O (557.7 and 630.0 nm) emissions originating from atmospheric layers centered at altitudes of 90 and 250 km were carried out at Irkutsk and of the O2(b1g+X3g) (0-1) emission originating from an atmospheric layer centered at altitude of 94 km was carried out at Almaty. Our radio and optical measurement network observed a storm-induced solitary large-scale wave with duration of 1 h and a wave front width of no less than 5000 km, while it traveled equatorward with a velocity of 200 m/s from 62°N to 38°N geographic latitude. The TEC disturbance, basically displaying an electron content depression in the maximum of the F2 region, reveals a good correlation with growing nightglow emission, the temporal shift between the TEC and emission variation maxima being different for different altitudes. A comparison of the auroral oval parameters with dynamic spectra of TEC variations and optical 630 nm emissions in the frequency range 0.4–4 mHz (250–2500 s periods) showed that as the auroral oval expands into mid-latitudes, also does the region with a developed medium-sale and small-scale TEC structure.  相似文献   
966.
967.
—?The number and geometric distribution of putative mantle up-welling centers and the associated convection cell boundaries are determined from the lithospheric plate motions as given by the 14 Euler poles of the observational NUVEL model. For an assumed distribution of up-welling centers (called “cell-cores”) the corresponding cell boundaries are constructed by a Voronoi division of the spherical surface; the resulting polygons are called “Bénard cells.” By assuming the flow-kinematics within a cell, the viscous coupling between the flow and the plates is estimated, and the Euler poles for the plates are computed under the assumption of zero-net-torque. The positions of the cell-cores are optimized for the HS2-NUVEL1 Euler poles by a method of successive approximation (“subplex”); convergence to one of many local minima occurred typically after ~20,000 iterations. Cell-cores associated with the fourteen HS2-NUVEL1 Euler poles converge to a relatively small number of locations (8 to 10, depending on interpretation), irrespective of the number of convection cells submitted for optimized distribution (from 6 to 50). These locations are correlated with low seismic propagation velocities in tomography, uniformly occur within hotspot provinces, and may specifically be associated with the Hawaiian, Iceland, Reunion/Kerguelen (Indian Ocean), Easter Island, Melanesia/Society Islands (South Pacific), Azores/Cape Verde/Canary Islands, Tristan da Cunha (South Atlantic), Balleny Islands, and possibly Yellowstone hotspots. It is shown that arbitrary Euler poles cannot occur in association with mantle Bénard convection, irrespective of the number and the distribution of convection cells. Nevertheless, eight of the observational Euler poles – including the five that are accurately determined in HS2-NUVEL1 (Australia, Cocos, Juan de Fuca, Pacific, and Philippine) – are “Bénard-valid” (i.e., can be explained by our Bénard model). Five of the remaining six observational poles must be relocated within their error-ellipses to become Bénard-valid; the Eurasia pole alone appears to be in error by ~115°, and may actually lie near 40°N, 154°E. The collective results strongly suggest Bénard-like mantle convection cells, and that basal shear tractions are the primary factor in determining the directions of the plate motions as given by the Euler poles. The magnitudes of the computed Euler vectors show, however, that basal shear cannot be the exclusive driving force of plate tectonics, and suggest force contributions (of comparable magnitude for perhaps half of the plates) from the lithosphere itself, specifically subducting slab-pull and (continental) collision drag, which are provisionally evaluated. The relationship of the putative mantle Bénard polygons to dynamic chaos and turbulent flow is discussed.  相似文献   
968.
How to obtain alert velocity thresholds for large rockslides   总被引:1,自引:0,他引:1  
A reliable forecast of the failure stage of large rockslides is difficult, because of non-linear time dependency of displacements and seasonal effects. Aim of this paper is to suggest a practical method to prepare alert thresholds for large rockslides, assessing critical values of velocity for carrying out civil protection actions using monitoring data. Adopted data concern the 20 Mm3 Ruinon rockslide (Valfurva, Central Alps, Italy), still evolving and suitable to originate a fast moving rock avalanche. Multitemporal analysis of aerial photos, LIDAR-ALTM laser topography, field survey and geomechanical analyses allowed to infer the rockslide kinematics and better understand data provided by a monitoring network including distometers, extensometers, GPS benchmarks and inclinometers. The analysis of displacement and rainfall data over five years (1997–2001) allowed to recognise three different evolutionary patterns of displacements, showing a continuously increasing rate since 1997. Data representing large-scale behaviour of the rock mass were fitted by power-law curves, according to the “accelerating creep” model by Voight, in order to evaluate a suitable failure time. This was hampered by the large seasonal deviations, which can significantly delay the occurrence of failure. Data were fitted using the Voight’s equation, expressed in terms of displacement, through non-linear estimation techniques, in order to find values of the controlling parameters (A, α and tf) suitable to represent the mechanical behaviour of the rock mass approaching the failure. This allowed to compute velocity–time theoretical curves and to define different velocity threshold values (pre-alert, alert and emergency) to be used for emergency management.  相似文献   
969.
970.
The methods used for a building seismic hazard evaluation are presented with the associated results. The goals of the study are (1) to check the soil nature and the existence or not of a possible site effect around the installation and (2) to characterize the dynamic behavior of the building using ambient vibration records.

The results of the soil study with the Nakamura method are very difficult to interpret because they are not stable in space and time. The spectral ratios method has been used with regional earthquake records. The results of the application of this method allowed us to conclude that the installation was free of site effect.

The ambient vibration measurements on the building brought the conclusion to determine the first and second modes of the structure. These results have been used to calibrate numerical model. The modal shapes in plan (high roof) and in elevation (main column) have been evaluated. The damping of the building has been computed using ambient vibration records.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号