首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1153篇
  免费   46篇
  国内免费   20篇
测绘学   20篇
大气科学   102篇
地球物理   293篇
地质学   370篇
海洋学   131篇
天文学   183篇
综合类   7篇
自然地理   113篇
  2021年   14篇
  2020年   13篇
  2019年   21篇
  2018年   28篇
  2017年   20篇
  2016年   34篇
  2015年   26篇
  2014年   38篇
  2013年   59篇
  2012年   42篇
  2011年   38篇
  2010年   41篇
  2009年   56篇
  2008年   51篇
  2007年   39篇
  2006年   43篇
  2005年   36篇
  2004年   26篇
  2003年   41篇
  2002年   24篇
  2001年   32篇
  2000年   28篇
  1999年   19篇
  1998年   20篇
  1997年   17篇
  1996年   9篇
  1995年   13篇
  1994年   16篇
  1993年   17篇
  1992年   8篇
  1991年   13篇
  1990年   18篇
  1989年   13篇
  1987年   11篇
  1986年   7篇
  1985年   20篇
  1984年   18篇
  1983年   18篇
  1982年   28篇
  1981年   23篇
  1980年   22篇
  1979年   18篇
  1978年   18篇
  1977年   21篇
  1976年   18篇
  1975年   12篇
  1974年   15篇
  1973年   18篇
  1972年   6篇
  1971年   8篇
排序方式: 共有1219条查询结果,搜索用时 31 毫秒
81.
Geologic discontinuities across the Cheyenne Belt of southeastern Wyoming have led to interpretations that this boundary is a major crustal suture separating the Archaean Wyoming Province to the north from accreted Proterozoic island arc terrains to the south. Gravity profiles across the Cheyenne Belt in three Precambrian-cored Laramide uplifts show a north to south decrease in gravity values of 50–100 mgal. These data indicate that the Proterozoic crust is more felsic (less dense) and/or thicker than Archaean crust. Seismic refraction data show thicker crust (48–54 km) in Colorado than in Wyoming (37–41 km). We model the gravity profiles in two ways: 1) thicker crust to the south and a south-dipping ramp in the Moho beneath and just south of the Cheyenne Belt; 2) thicker crust to the south combined with a mid-crustal density decrease of about 0.05 g/cm3. Differences in crustal thickness may have originated 1700 Ma ago because: 1) the gravity gradient is spatially related to the Cheyenne Belt which has been immobile since about 1650 Ma ago; 2) the N-S gradient is perpendicular to the trend of gravity gradients associated with local Laramide uplifs and sub-perpendicular to regional long-wavelength Laramide gradients and is therefore probably not a Laramide feature. Thus, gravity data support the interpretation that the Cheyenne Belt is a Proterozoic suture zone separating terrains of different crustal structure. The gravity “signature” of the Cheyenne Belt is different from “S”-shaped gravity anomalies associated with Proterozoic sutures of the Canadian Shield which suggests fundamental differences between continent-continent and island arc-continent collisional processes.  相似文献   
82.
Isotopic concentrations of the noble gases have been measured in several different phases of Elephant Moraine A79001 and in whole rock samples of Zagami and Allan Hills A77005, three meteorites which belong to the rare group of SNC achondrites that may have originated from the planet Mars. Shocked phases of EETA79001 contain a trapped Ar, Kr, and Xe component characterized by 84Kr132Xe ~15, 40Ar36Ar > 2000, 129Xe132Xe ≥ 2, and 4He40Ar ≤ 0.1. These elemental and isotopic ratios are unlike those for any other noble gas component except analyses of the Martian atmosphere made by Viking spacecraft. The isotopic composition of the trapped Kr shows an approximate 1% per mass unit enrichment of lighter isotopes compared to terrestrial Kr, and the traped Xe may show either a fission component or a fractionated enrichment of heavier isotopes compared to terrestrial Xe. It is hypothesized that these gases represent a portion of the Martian atmosphere which was shock-implanted into EETA79001, and that they constitute direct evidence of a Martian origin for the shergottite meteorites. Cosmic ray-produced gases in the eight known SNC meteorites form three distinct groups with exposure ages of ~11 MY (Chassigny and the nakhlites), ~2.6 MY (Shergotty, Zagami, and ALHA77005), and ~0.5 MY (EETA79001). These ages suggest three distinct events and cannot have been produced by irradiation for a common time under greatly different shielding. Comparison of cosmogenic 3He21Ne measured in EETA79001 with two independent models for the production of this ratio as a function of shielding indicates that this meteorite was irradiated in space as a relatively small object. If the SNC meteorites were ejected from Mars ~ 180 My ago, the shock age of the shergottites, they must have been relatively large objects (>6 meters diameter) which experienced at least three space collisions to initiate cosmic ray exposure. Ejection from Mars by three events at the times of initiation of cosmic ray exposure would permit the ejected objects to have been much smaller (<1 meter diameter), but would require three such events on 1.3 Gy Martian terraine in the past ~10 MY and would not explain the common 180 MY shock age seen in all four shergottites.  相似文献   
83.
84.
85.
A largely submarine avalanche amphitheatre that formed catastrophically in 1888 on Ritter volcano has been identified from a bathymetric survey. Collapse of the volcano in 1888 therefore is considered to have been caused by rapid, large-scale slope failure, rather than by cauldron subsidence, as previously supposed. Escarpments of pre-historic slope failures are common on other Papua New Guinea volcanoes. Directions of avalanching on some volcanoes in the Bismarck volcanic arc appear to be controlled by a regional stress pattern, and those for some volcanoes in the Fly-Highlands province on mainland Papua New Guinea point away from the regional centre of Pliocene uplift. Large amphitheatres such as at Doma Peaks in the Fly-High-lands province probably originated by multiple collapses.  相似文献   
86.
87.
The solubility product of rhodochrosite (MnCO3) was measured in seawater, deionized water and dilute NaCl solutions. The solubility product extrapolated to infinite dilution at 25.0 C was (2.60 ± 0.07)× 10?11. The stoichiometric solubility product measured in seawater of 34.27%. salinity was (3.24 ± 0.23) × 10?9 at 25.0 C and (2.28 ± 0.24) × 10?9 at 3.3 C. The stoichiometric solubility product is in good agreement with the value calculated from an ion association model. The enthalpy of the reaction is in fair agreement with the estimated value.  相似文献   
88.
The existence of detachment surfaces or décollement zones beneath folded rocks of the Valley and Ridge and Plateau provinces of the Appalachians has been recognized as an important condition of folding. Large folds at the border between the two provinces resulted primarily from repetition of strata by thrusting of blocks over ramp faults that connect detachement surfaces at different horizons. Some investigators have suggested that folds in the Plateau province of Pennsylvania were produced by splay faults arising from detachment surfaces, but field observations and theoretical analyses by Sherwin and by Wiltschko & Chapple suggest that the folds are a result of buckling of multilayered rocks above a décollement. An exception may be the Burning Springs anticline in West Virginia, which appears to have formed at the termination of a detachment surface.Investigation of the translation of an homogenous, viscous material above a flat detachment surface that terminates laterally indicates that the termination produces a broad, low-amplitude anticline in passive layering as a result of thickening induced by a gradient of shear stresses in the vertical direction. This thickening above the termination of a detachment is a mechanism of folding. If the viscous fluid contained mechanical layering, the fold would become amplified by buckling. Computations of stresses in the material indicate that minor faults should be generated first near the termination of the flat detachment surface. The Burning Springs anticline probably was initiated by termination of a detachment surface and subsequently amplified by buckling.  相似文献   
89.
RB-Sr and Sm-Nd isotopic and trace-element-abundance values have been determined for 15 mafic and intermediate rocks from six Pleistocene volcanic centres of the Fly-Highlands province. 87Sr/86Sr and N d values range from 0.70362 to 0.70540, and +1.9 to +5.9, respectively. These new data can be accounted for by contamination of mantle-derived magmas by the continental crust through which the magmas have risen. They do not, however, preclude derivation of some of the Sr and Nd from subducted crust, nor are they inconsistent with Sr and Nd enrichments having taken place by means of mantle metasomatic events. Nevertheless, there is no Benioff zone beneath the Fly-Highlands province (although there is geological evidence for Cretaceous subduction). A preferred interpretation is that uncontaminated, mantle-derived magmas are related to the Pliocene crustal uplift that caused the development of the highlands and which formed in response to a mid-Tertiary continent/island-arc collision.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号