首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   741篇
  免费   38篇
  国内免费   3篇
测绘学   26篇
大气科学   63篇
地球物理   175篇
地质学   256篇
海洋学   79篇
天文学   115篇
综合类   2篇
自然地理   66篇
  2022年   3篇
  2021年   7篇
  2020年   12篇
  2019年   14篇
  2018年   21篇
  2017年   19篇
  2016年   18篇
  2015年   16篇
  2014年   23篇
  2013年   45篇
  2012年   35篇
  2011年   43篇
  2010年   38篇
  2009年   44篇
  2008年   52篇
  2007年   49篇
  2006年   38篇
  2005年   27篇
  2004年   30篇
  2003年   29篇
  2002年   21篇
  2001年   16篇
  2000年   17篇
  1999年   11篇
  1998年   7篇
  1997年   5篇
  1996年   8篇
  1995年   9篇
  1994年   11篇
  1993年   12篇
  1992年   5篇
  1991年   2篇
  1990年   6篇
  1989年   6篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1985年   8篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1981年   10篇
  1980年   7篇
  1979年   5篇
  1978年   6篇
  1977年   2篇
  1975年   4篇
  1974年   4篇
  1973年   3篇
  1971年   2篇
排序方式: 共有782条查询结果,搜索用时 31 毫秒
21.
A detailed geochemical and microbiological study of a ∼2 m sediment core from the inactive Alvin mounds within the TAG hydrothermal field was conducted to examine, for the first time, the role of prokaryotes in subsurface weathering of hydrothermal sediments. Results show that there has been substantial post-depositional remobilisation of metal species and diagenetic overprinting of the original high-temperature hydrothermal minerals, and aspects have involved prokaryotic processes. Prokaryotic enumeration demonstrates the presence of a population smaller than the average for deep sea sediments, probably due to the low organic carbon content, but not inhibited by (and hence adapted to) the metal rich environment. There was a small but significant increase in population size associated with the active redox boundary in an upper metal sulphide layer (50-70 cm) around which active metal remobilisation was concentrated (Cu, Au, Cd, Ag, U, Zn and Zn). Hence, subsurface prokaryotes were potentially obtaining energy from metal metabolism in this near surface zone. Close association of numbers of culturable Mn and Fe reducing prokaryotes with subsurface Fe2+ and Mn2+ pore water profiles suggested active prokaryotic metal reduction at depth in core CD102/43 (to ∼175 cm). In addition, a prokaryotic mechanism, which is associated with bacterial sulphate reduction, is invoked to explain the U enrichment on pyrite surfaces and Zn and Pb remobilisation in the upper sediment. Although prokaryotic populations are present throughout this metalliferous sediment, thermodynamic calculations indicated that the inferred low pH of pore waters and the suboxic/anoxic conditions limits the potential energy available from Fe(II) oxidation, which may restrict prokaryotic chemolithotrophic biomass. This suggests that intense prokaryotic Fe oxidation and weathering of seafloor massive sulphide deposits may be restricted to the upper portion of the deposit that is influenced by near neutral pH and oxic seawater unless there is significant subsurface fluid flow.  相似文献   
22.
Lateral moraines constructed along west to east sloping outlet glaciers from mountain centred, pre-last glacial maximum (LGM) ice fields of limited extent remain largely preserved in the northern Swedish landscape despite overriding by continental ice sheets, most recently during the last glacial. From field evidence, including geomorphological relationships and a detailed weathering profile including a buried soil, we have identified seven such lateral moraines that were overridden by the expansion and growth of the Fennoscandian ice sheet. Cosmogenic 10Be and 26Al exposure ages of 19 boulders from the crests of these moraines, combined with the field evidence, are correlated to episodes of moraine stabilisation, Pleistocene surface weathering, and glacial overriding. The last deglaciation event dominates the exposure ages, with 10Be and 26Al data derived from 15 moraine boulders indicating regional deglaciation 9600 ± 200 yr ago. This is the most robust numerical age for the final deglaciation of the Fennoscandian ice sheet. The older apparent exposure ages of the remaining boulders (14,600-26,400 yr) can be explained by cosmogenic nuclide inheritance from previous exposure of the moraine crests during the last glacial cycle. Their potential exposure history, based on local glacial chronologies, indicates that the current moraine morphologies formed at the latest during marine oxygen isotope stage 5. Although numerous deglaciation ages were obtained, this study demonstrates that numerical ages need to be treated with caution and assessed in light of the geomorphological evidence indicating moraines are not necessarily formed by the event that dominates the cosmogenic nuclide data.  相似文献   
23.
In 2005 Geostandards and Geoanalytical Research embarked upon a new initiative for its readers. Key researchers in various fields of geoanalytical technique development and their application were identified and invited to provide reviews pertinent to their expertise. As noted in the first of these publications "…instead of revisiting the historical context or decades of development in each analytical technique, the goal here has been to capture a snapshot of "hot topics" across a range of fields as represented in the… literature" (Hergt et al . 2005). Rather than prepare an annual review, a decision was taken earlier this year to provide a biennial summary of progress and accomplishments, in this case for the years 2004–2005. The principal techniques employed in Earth and environmental sciences are covered here, and include laser ablation and multicollector ICP-MS, ICP-AES, thermal ionisation and secondary ion mass spectrometry, as well as neutron activation analysis, X-ray fluorescence and atomic absorption spectrometry. A comprehensive review of the development of reference materials, often essential to these techniques, is also provided. The contributions assembled serve both to keep readers informed of advances they may be unfamiliar with, but also as a means of showcasing examples of the breadth and depth of work being conducted in these fields.  相似文献   
24.
A limnogeological reconnaissance study was carried out on Lake Iznik, located in the southeast of the Marmara region of Turkey, involving a seismic survey and collection of short sediment cores. This lake is located on the middle branch of the North Anatolian Fault Zone (NAFZ), a transform plate boundary between the Eurasian and Anatolian Plates. It is, therefore, tectonically active and offers an opportunity to investigate the interplay of sedimentary and seismo-tectonic processes, as well as climate change and human impact in the region. Short cores of the three sub-basins, maximum length of 35.5 cm, recovered non-laminated, blackish clays and silts with varying amounts of biogenic and minerogenic (allochthonous, autochthonous) material, which documented almost the last 80 years of deposition and environmental history. High sedimentation rates in the deeper core sections are accompanied by changes in land use (conversion of woodland to farmland) in the northern areas of Lake Iznik, which caused the deposition of more weathered material (high K/Na ratios) and higher contents of Mn in the lake. A tendency towards eutrophic conditions within the last 20 years is indicated by high nutrient content (N, TOC, P), decreasing C/N-ratios, and characteristic diatom and cladoceran associations. Also increased pollution is revealed by higher Pb, Cu, and Zn contents and increased supply of human and animal faeces (high coprostanol content) during the last two decades. But simultaneous lower sedimentation rates towards the core tops complicate the reconstruction of recent and past eutrophication and pollution states of Lake Iznik. This requires an extension of the pilot study and deeper sediment cores, to recover non-anthropogenic influenced sediment levels.  相似文献   
25.
Stochastic Structural Modeling   总被引:3,自引:0,他引:3  
A consistent stochastic model for faults and horizons is described. The faults are represented as a parametric invertible deformation operator. The faults may truncate each other. The horizons are modeled as correlated Gaussian fields and are represented in a grid. Petrophysical variables may be modeled in a reservoir before faulting in order to describe the juxtaposition effect of the faulting. It is possible to condition the realization on petrophysics, horizons, and fault plane observations in wells in addition to seismic data. The transmissibility in the fault plane may also be included in the model. Four different methods to integrate the fault and horizon models in a common model is described. The method is illustrated on an example from a real petroleum field with 18 interpreted faults that are handled stochastically.  相似文献   
26.
Climate Dangers and Atoll Countries   总被引:2,自引:1,他引:2  
Climate change-induced sea-level rise, sea-surface warming, and increased frequency and intensity of extreme weather events puts the long-term ability of humans to inhabit atolls at risk. We argue that this risk constitutes a dangerous level of climatic change to atoll countries by potentially undermining their national sovereignty. We outline the novel challenges this presents to both climate change research and policy. For research, the challenge is to identify the critical thresholds of change beyond which atoll social-ecological systems may collapse. We explain how thresholds may be behaviorally driven as well as ecologically driven through the role of expectations in resource management. The challenge for the international policy process, centred on the UN Framework Convention on Climate Change (UNFCCC), is to recognize the particular vulnerability of atoll countries by operationalising international norms of justice, sovereignty, and human and national security in the regime.  相似文献   
27.
28.
We use large-eddy simulation (LES) to study the turbulent pressure field in atmospheric boundary layers with free convection, forced convection, and stable stratification. We use the Poisson equation for pressure to represent the pressure field as the sum of mean-shear, turbulence–turbulence, subfilter-scale, Coriolis, and buoyancy contributions. We isolate these contributions and study them separately. We find that in the energy-containing range in the free-convection case the turbulence–turbulence pressure dominates over the entire boundary layer. That part dominates also up to midlayer in the forced-convection case; above that the mean-shear pressure dominates. In the stable case the mean-shear pressure dominates over the entire boundary layer.We find evidence of an inertial subrange in the pressure spectrum in the free and forced-convection cases; it is dominated by the turbulence–turbulence pressure and has a three-dimensional spectral constant of about 4.0. This agrees well with quasi-Gaussian predictions but is a factor of 2 less than recent results from direct numerical simulations at moderate Reynolds numbers. Measurements of the inertial subrange pressure spectral constant at high Reynolds numbers, which might now be possible, would be most useful.  相似文献   
29.
Fluid flow in fractured rock is an increasingly central issue in recovering water and hydrocarbon supplies and geothermal energy, in predicting flow of pollutants underground, in engineering structures, and in understanding large-scale crustal behaviour. Conventional wisdom assumes that fluids prefer to flow along fractures oriented parallel or nearly parallel to modern-day maximum horizontal compressive stress, or SHmax. The reasoning is that these fractures have the lowest normal stresses across them and therefore provide the least resistance to flow. For example, this view governs how geophysicists design and interpret seismic experiments to probe fracture fluid pathways in the deep subsurface. Contrary to these widely held views, here we use core, stress measurement, and fluid flow data to show that SHmax does not necessarily coincide with the direction of open natural fractures in the subsurface (>3 km depth). Consequently, in situ stress direction cannot be considered to predict or control the direction of maximum permeability in rock. Where effective stress is compressive and fractures are expected to be closed, chemical alteration dictates location of open conduits, either preserving or destroying fracture flow pathways no matter their orientation.  相似文献   
30.
This paper reviews key characteristics of kimberlites on the Ekati property, NWT, Canada. To date 150 kimberlites have been discovered on the property, five of which are mined for diamonds. The kimberlites intrude Archean basement of the central Slave craton. Numerous Proterozoic diabase dykes intrude the area. The Precambrian rocks are overlain by Quaternary glacial sediments. No Phanerozoic rocks are present. However, mudstone xenoliths and disaggregated sediment within the kimberlites indicate that late-Cretaceous and Tertiary cover (likely <200 m) was present at the time of emplacement. The Ekati kimberlites range in age from 45 to 75 Ma. They are mostly small pipe-like bodies (surface area mostly <3 ha but up to 20 ha) that typically extend to projected depths of 400–600 m below current surface. Pipe morphologies are strongly controlled by joints and faults. The kimberlites consist primarily of variably bedded volcaniclastic kimberlite (VK). This is dominated by juvenile constituents (olivine and lesser kimberlitic ash) and variable amounts of exotic sediment (primarily mud), with minor amounts of xenolithic wall-rock material (generally <5%). Kimberlite types include: mud-rich resedimented VK (mRVK); olivine-rich VK (oVK); sedimentary kimberlite; primary VK (PVK); tuffisitic kimberlite (TK) and magmatic kimberlite (MK). The presence and arrangement of these rock types varies widely. The majority of bodies are dominated by oVK and mRVK, but PVK is prominent in the lower portions of certain kimberlites. TK is rare. MK occurs primarily as precursor dykes but, in a few cases, forms pipe-filling intrusions. The internal geology of the kimberlites ranges from simple single-phase pipes (RVK or MK), to complex bodies with multiple, distinct units of VK. The latter include pipes infilled with steep, irregular VK blocks/wedges and at least one case in which the pipe is occupied by well-defined sub-horizontal VK phases, including a unique, 100-m-thick graded sequence. The whole-rock compositions of VK samples suggest significant loss of kimberlitic fines during eruption followed by variable dilution by surface sediment and concurrent incorporation of kimberlitic ash. Diamond distribution within the kimberlites reflects the amount and nature of mantle material sampled by individual kimberlite phases, but is modified considerably by eruption and depositional processes. The characteristics of the Ekati kimberlites are consistent with a two-stage emplacement process: (1) explosive eruption/s causing vent clearing followed by formation of a significant tephra rim/cone of highly fragmented, olivine-enriched juvenile material with varying amounts of kimberlitic ash and surface sediments (predominantly mud); and (2) infilling of the vent by direct deposition from the eruption column and/or resedimentation of crater rim materials. The presence of less fragmented, juvenile-rich PVK in the lower portions of certain pipes and the intrusion of large volumes of MK to shallow levels in some bodies suggest emplacement of relatively volatile-depleted, less explosive kimberlite in the later stages of pipe formation and/or filling. Explosive devolatilisation of CO2-rich kimberlite magma is interpreted to have been the dominant eruption mechanism, but phreatomagmatism is thought to have played a role and, in certain cases, may have been dominant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号