首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   741篇
  免费   38篇
  国内免费   3篇
测绘学   26篇
大气科学   63篇
地球物理   175篇
地质学   256篇
海洋学   79篇
天文学   115篇
综合类   2篇
自然地理   66篇
  2022年   3篇
  2021年   7篇
  2020年   12篇
  2019年   14篇
  2018年   21篇
  2017年   19篇
  2016年   18篇
  2015年   16篇
  2014年   23篇
  2013年   45篇
  2012年   35篇
  2011年   43篇
  2010年   38篇
  2009年   44篇
  2008年   52篇
  2007年   49篇
  2006年   38篇
  2005年   27篇
  2004年   30篇
  2003年   29篇
  2002年   21篇
  2001年   16篇
  2000年   17篇
  1999年   11篇
  1998年   7篇
  1997年   5篇
  1996年   8篇
  1995年   9篇
  1994年   11篇
  1993年   12篇
  1992年   5篇
  1991年   2篇
  1990年   6篇
  1989年   6篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1985年   8篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1981年   10篇
  1980年   7篇
  1979年   5篇
  1978年   6篇
  1977年   2篇
  1975年   4篇
  1974年   4篇
  1973年   3篇
  1971年   2篇
排序方式: 共有782条查询结果,搜索用时 15 毫秒
61.
An analytic solution for a steady, horizontally homogeneous boundary layer with rotation, % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgaaaa!38AA! \[ f \] , and surface friction velocity, û*, subjected to surface buoyancy characterized by Obukhov length L, is proposed as follows. Nondimensional variables are % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA7a6jabg2 % da9iaadAgacaWG6bGaai4laiabeE7aOnaaBaaaleaacqGHxiIkaeqa % aOGaamyDamaaBaaaleaacqGHxiIkaeqaaOGaaiilaiqadwhagaqcai % abg2da9iabeE7aOnaaBaaaleaacqGHxiIkaeqaaOGabmyvayaajaGa % ai4laiqadwhagaqcamaaBaaaleaacqGHxiIkaeqaaOGaaiilaiqads % fagaqcaiabg2da9iqbes8a0zaajaGaai4laiaadwhadaWgaaWcbaGa % ey4fIOcabeaakiqadwhagaqcamaaBaaaleaacqGHxiIkcaGGSaaabe % aaaaa!5587! \[ \zeta = fz/\eta _ * u_ * ,\hat u = \eta _ * \hat U/\hat u_ * ,\hat T = \hat \tau /u_ * \hat u_{ * ,} \] , where carets denote complex (vector) quantities; Û is the mean velocity; % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr% 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiqbes8a0zaaja% aaaa!3994!\[\hat \tau \]is the kinematic turbulent stress; and % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOnaaBa % aaleaacqGHxiIkaeqaaOGaeyypa0JaaiikaiaaigdacqGHRaWkcqaH % +oaEdaWgaaWcbaGaamOtaaqabaGccaWG1bWaaSbaaSqaaiabgEHiQa % qabaGccaGGVaGaamOuamaaBaaaleaacaWGJbaabeaakiaadAgacaWG % mbGaaiykamaaCaaaleqabaGaeyOeI0IaaGymaiaac+cacaaIYaaaaa % aa!4B1F! \[ \eta _ * = (1 + \xi _N u_ * /R_c fL)^{ - 1/2} \]is a stability parameter. The constant % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa % aaleaacaWGobaabeaaaaa!3A81! \[\xi _N \] is the ratio of the maximum mixing length(% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr% 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaamaaBaaaleaaca% WGTbaabeaaaaa!38DD!\[_m \]) to the PBL depth, % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhadaWgaa % WcbaGaey4fIOcabeaakiaac+cacaWGMbaaaa!3B7C! \[ u_ * /f \] , for neutrally stable conditions; and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr% 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa% WcbaGaam4yaaqabaaaaa!39AA!\[R_c\](the critical flux Richardson number) is the ratio % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgadaWgaa % WcbaGaamyBaaqabaGccaGGVaGaamitaaaa!3B5C! \[ l_m /L \] under highly stable conditions. Profiles of stress and velocity in the ocean (<0) are given by % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGabm % yDayaajaGaeyypa0ZaaiqaaqaabeqaaiabgkHiTiaadMgacqaH0oaz % caWGLbWaaWbaaSqabeaacqaH0oazcqaH2oGEaaGccaqGGaGaaeiiai % aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGa % aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccaca % qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa % bccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae % iiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG % GaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabc % cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeii % aiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGa % GaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca % caqGGaGaaeiiaiaabccacaqGGaGaeqOTdONaeyizImQaeyOeI0Iaeq % OVdG3aaSbaaSqaaiaad6eaaeqaaaGcbaGaeyOeI0IaamyAaiabes7a % KjaadwgadaahaaWcbeqaaiabes7aKjabe67a4naaBaaameaacaWGob % aabeaaaaGccqGHsisldaWcaaqaaiabeE7aOnaaBaaaleaacaGGQaaa % beaaaOqaaiaadUgaaaWaamWaaeaaciGGSbGaaiOBamaalaaabaWaaq % WaaeaacqaH2oGEaiaawEa7caGLiWoaaeaacqaH+oaEdaWgaaWcbaGa % amOtaaqabaaaaOGaey4kaSIaaiikaiabes7aKjabgkHiTiaadggaca % GGPaGaaiikaiabeA7a6jabgUcaRiabe67a4naaBaaaleaacaWGobaa % beaakiaacMcacqGHsisldaWcaaqaaiaadggaaeaacaaIYaaaaiabes % 7aKjaacIcacqaH2oGEdaahaaWcbeqaaiaaikdaaaGccqGHsislcqaH % +oaEdaqhaaWcbaGaamOtaaqaaiaaikdaaaGccaGGPaaacaGLBbGaay % zxaaGaaeiiaiaabccacaqGGaGaaeiiaiabeA7a6naaBaaaleaacaaI % WaaabeaakiabgwMiZkabeA7a6jabg6da+iabgkHiTiabe67a4naaBa % aaleaacaWGobaabeaaaaGccaGL7baaaSqabKazbaiabaGabmivayaa % jaGaeyypa0JaamyzamaaCaaajqMaacqabeaacaWGPbGaeqiTdqMaeq % OTdOhaaaaaaaa!C5AA! \[ \mathop {\hat u = \left\{ \begin{array}{l} - i\delta e^{\delta \zeta } {\rm{ }}\zeta \le - \xi _N \\ - i\delta e^{\delta \xi _N } - \frac{{\eta _* }}{k}\left[ {\ln \frac{{\left| \zeta \right|}}{{\xi _N }} + (\delta - a)(\zeta + \xi _N ) - \frac{a}{2}\delta \end{array} \right.}\limits^{\hat T = e^{i\delta \zeta } } \] where % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabg2 % da9maabmaabaGaamyAaiaac+cacaWGRbGaeqOVdG3aaSbaaSqaaiaa % d6eaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4lai % aaikdaaaGccaGG7aGaamyyaiabg2da9iabeE7aOnaaBaaaleaacqGH % xiIkaeqaaOGaaiikaiaaigdacaGGVaGaeqOVdG3aaSbaaSqaaiaad6 % eaaeqaaOGaey4kaSIaamyDamaaBaaaleaacqGHxiIkaeqaaOGaai4l % aiaadAgacaWGmbGaamOuamaaBaaaleaacaWGJbaabeaakiaacMcaca % GGOaGaaGymaiabgkHiTiabeE7aOnaaBaaaleaacqGHxiIkaeqaaOGa % aiykaiaacUdaaaa!5CB6! \[ \delta = \left( {i/k\xi _N } \right)^{1/2} ;a = \eta _ * (1/\xi _N + u_ * /fLR_c )(1 - \eta _ * ); \] and 0 is the nondimensional surface roughness. The constants are% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr% 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa% WcbaGaam4yaaqabaaaaa!39AA!\[R_c \]= 0.2 and% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr% 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa% aaleaacaWGobaabeaaaaa!3A81!\[\xi _N \]= 0.052. The solutions for the atmosphere are similar except û is the nondimensional velocity The model produces satisfactory predictions of geostrophic drag and near-surface current (wind) profiles under stable stratification.  相似文献   
62.
An apparatus is described which permits precise, versatile control of simulated tidal flux in laboratory microcosms. A key component of the system, a programmable electronic control unit, can closely imitate any natural tidal function and is readily adaptable to other experimental applications that utilize timed switching capability. The programmable control unit is also cheaper and easier to operate than computer-based systems.  相似文献   
63.
Rosemary Bank is a non-uniformly magnetised seamount in the northern Rockall Trough. The reversely magnetised major component of the anomaly field was simulated by a numerical method and modelled using the Talwani three-dimensional magnetics program. The results suggest a higher Koenigsberger ratio than earlier reported for Rosemary Bank and a remanent magnetisation vector compatible with post-Jurassic formation and probably of a Late Cretaceous to Tertiary age. The limited depth to the base of the model implies that Rosemary Bank post-dates the underlying basement in agreement with a volcanic origin. The residual of the observed anomaly field is interpreted as being caused by normally magnetised bodies within and on top of the bank. This suggests subsequent volcanic activity during an interval of normal polarity.  相似文献   
64.
The Rockall Trough separates the Rockall Plateau microcontinent from the shelf and slope west of the British Isles. The structure and age of the trough has been the source of considerable discussion. Although widely considered to be of oceanic origin, postulated ages for the spreading range from Permian to Cretaceous. New seismic profiles linked to the IPOD sites in the Bay of Biscay and to oceanic anomalies of known age are used to present a new assessment of the age and structure of the southern Rockall Trough. It is concluded that about 120 km of ocean crust is present in the trough and that spreading took place in the Albian-Maastrichtian interval.  相似文献   
65.
This review of geological, seismological, geochronological and paleobotanical data is made to compare historic and geologic rates and styles of deformation of the Sierra Nevada and western Basin and Range Provinces. The main uplift of this region began about 17 m.y. ago, with slow uplift of the central Sierra Nevada summit region at rates estimated at about 0.012 mm/yr and of western Basin and Range Province at about 0.01 mm/yr. Many Mesozoic faults of the Foothills fault system were reactivated with normal slip in mid-Tertiary time and have continued to be active with slow slip rates. Sparse data indicate acceleration of rates of uplift and faulting during the Late Cenozoic. The Basin and Range faulting appears to have extended westward during this period with a reduction in width of the Sierra Nevada.The eastern boundary zone of the Sierra Nevada has an irregular en-echelon pattern of normal and right-oblique faults. The area between the Sierra Nevada and the Walker Lane is a complex zone of irregular patterns of hörst and graben blocks and conjugate normal-to right- and left-slip faults of NW and NE trend, respectively. The Walker Lane has at least five main strands near Walker Lake, with total right-slip separation estimated at 48 km. The NE-trending left-slip faults are much shorter than the Walker Lane fault zone and have maximum separations of no more than a few kilometers. Examples include the 1948 and 1966 fault zone northeast of Truckee, California, the Olinghouse fault (Part III) and possibly the almost 200-km-long Carson Lineament.Historic geologic evidence of faulting, seismologic evidence for focal mechanisms, geodetic measurements and strain measurements confirm continued regional uplift and tilting of the Sierra Nevada, with minor internal local faulting and deformation, smaller uplift of the western Basin and Range Province, conjugate focal mechanisms for faults of diverse orientations and types, and a NS to NE—SW compression axis (σ1) and an EW to NW—SE extension axis (σ3).  相似文献   
66.
A COCORP deep crustal reflection profile across the Wind River uplift crosses exposed Archean rocks and resolves an unusual complex deep crustal structure at a depth of 24–31 km in an area where depth relations in Precambrian rocks can be inferred. The different levels of exposure across the beveled plunge of the Wind River uplift reveal supracrustal rocks at shallower levels with migmatites and pyroxene granulites at deeper levels. For the first time, deep crustal structure from reflection profiling may be interpreted in terms of exposed basement geology. A folded, multilayered deep structure shown by relfection data resembles multiply folded pyroxene granulite interlayered with granitic gneiss exposed in the central Wind River uplift; isoclinal folding is suggested in the folded layered seismic structure. Earlier seismic reflection studies suggested a simpler lower crust. These data indicate that lower crustal structure may have a complexity similar to deeply eroded Precambrian granulite-facies rocks. If this seismic feature represents folded metamorphic rocks, it seems unlikely that this Archean crust could have been thickened by underplating after 2.7 b.y. B.P. and the crust would have to be at least 30 km thich when this structure was formed.  相似文献   
67.
68.
Whilst the fauna inhabiting hydrothermal vent structures in the Atlantic Ocean is reasonably well known, less is understood about the spatial distributions of the fauna in relation to abiotic and biotic factors. In this study, a major active hydrothermal edifice (Eiffel Tower, at 1690 m depth) on the Lucky Strike vent field (Mid-Atlantic Ridge (MAR)) was investigated. Video transects were carried out by ROV Victor 6000 and complete image coverage was acquired. Four distinct assemblages, ranging from dense larger-sized Bathymodiolus mussel beds to smaller-sized mussel clumps and alvinocaridid shrimps, and two types of substrata were defined based on high definition photographs and video imagery. To evaluate spatial variation, faunal distribution was mapped in three dimensions. A high degree of patchiness characterizes this 11 m high sulfide structure. The differences observed in assemblage and substratum distribution were related to habitat characteristics (fluid exits, depth and structure orientation). Gradients in community structure were observed, which coincided with an increasing distance from the fluid exits. A biological zonation model for the Eiffel Tower edifice was created in which faunal composition and distribution can be visually explained by the presence/absence of fluid exits.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号