首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   16篇
  国内免费   7篇
测绘学   4篇
大气科学   28篇
地球物理   62篇
地质学   101篇
海洋学   19篇
天文学   52篇
自然地理   38篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   9篇
  2019年   7篇
  2018年   18篇
  2017年   13篇
  2016年   10篇
  2015年   4篇
  2014年   9篇
  2013年   16篇
  2012年   6篇
  2011年   15篇
  2010年   18篇
  2009年   14篇
  2008年   8篇
  2007年   13篇
  2006年   6篇
  2005年   6篇
  2004年   7篇
  2003年   15篇
  2002年   12篇
  2001年   10篇
  2000年   8篇
  1999年   8篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1966年   2篇
排序方式: 共有304条查询结果,搜索用时 15 毫秒
51.
We investigate the seismic structure of the western Philippine Sea using two sets of seismological observations: ScS reverberations, which provide the layering framework for a regional upper mantle model, and observations of frequency-dependent phase delays for direct S waves, surface-reflected phases (sS, SS, sSS), and surface waves (R1, G1), which constrain the velocity and anisotropy structure within the layers. The combined data set, comprising 17 discontinuity amplitudes and layer travel times from the ScS-reverberation stack and more than 1000 frequency-dependent phase delays, was inverted for a path-averaged, radially anisotropic model. Mineralogical estimates of the bulk sound velocity and density are incorporated as complementary constraints. The final model, PHB3, is characterized by a 11.5-km thick crust, an anisotropic lid bounded by a sharp negative G discontinuity at 89 km, an anisotropic low-velocity layer extending to 166 km, a subjacent high-gradient region, and transition-zone discontinuities at depths of 408 km, 520 km and 664 km. The lid is slower than in a comparable model for the Tonga–Hawaii corridor (PA5), but also significantly thicker, requiring a compositional variation between the two regions. We explore the hypothesis that the thickness of the oceanic lid is controlled by the melting depth at the spreading centers during crust formation, and that the thicker crust and lid in the Philippine Sea results from deeper melting owing to a higher potential temperature and perhaps a higher water content in the upper mantle.  相似文献   
52.
Coastal environments of northwest Alaska preserve a detailed record of sea level change during the past 5000 14C yr. Rapid burial of intertidal marshes by storm overwash processes, a short open water period, and the arctic maritime climate contribute to the preservation of marine and eolian facies. Eustatic and storm-controlled changes in sea level can be identified from interbedded sequences of marsh peat and coastal flood deposits on barrier islands and estuaries along northwest Seward Peninsula. Mean eustatic sea level has risen about 1.5 m during the last 5000 years, at an average of ca. 0.028 cm yr−1, based on the depth and age relationship of a suite of 23 peat horizons sampled from a 140 km-long reach of coast. Nearshore erosion and sedimentation are controlled by secular variations in wave climate. Peaks in tidal amplitude and storminess correlate with transgressive sedimentary regimes and occurred during the periods 3300–1700, 1200–900, and since about 400 14C yr BP. Short-term fluctuations in relative sea level are superimposed on the long-term regional eustatic trend, and record the coastal response to variable rates of sea-level change during the late Holocene.  相似文献   
53.
Stability and dynamics of the continental tectosphere   总被引:1,自引:0,他引:1  
Continental cratons overlie thick, high-viscosity, thermal and chemical boundary layers, where the chemical boundary layers are less dense than they would be due to thermal effects alone, perhaps because they are depleted in basaltic constituents. If the continental tectosphere is the same age as the overlying Archaean crust, then the continental tectosphere must be able to survive for several billion years without undergoing a convective instability, despite being both cold and thick. Since platforms and shields correlate only weakly with Earth's gravity and geoid anomalies, acceptable models of the continental tectosphere must also satisfy this gravity constraint. We investigate the long-term stability of the continental tectosphere by carrying out a number of numerical convection experiments within a two-dimensional Cartesian domain. We initiate our experiments with a tectosphere (thermal and chemical boundary layers) immersed in a region of uniform composition, temperature, and viscosity, and consider the effects on the stability of the tectosphere of (1) activation energy (used to define the temperature dependence of viscosity), (2) compositional buoyancy, and (3) linear or non-linear rheology. The large lateral thermal gradients required to match oceanic and tectosphere structures initiate the dominant instability, a “drip” which develops at the side of the tectosphere and moves to beneath its center. High activation energies and high background viscosities restrict the amount and rate of entrainment. Compositional buoyancy does not significantly change the flow pattern. Rather, compositional buoyancy slows the destruction process somewhat and reduces the stress within the tectosphere. With a non-Newtonian rheology, this reduction in stress helps to stiffen the tectosphere. In these experiments, dynamical systems that adequately model the present ocean-continent structures have activation energy E*≥180 kJ mole−1 — a value about one third the estimate of activation energy for olivine, E*≈520 kJ mole−1. Although for E*≈520 kJ mole−1, compositional buoyancy is not required for the tectosphere to survive, the joint application of longevity and gravity constraints allows us to reject all models not containing compositional buoyancy, and to predict that the ratio of compositional to thermal buoyancy within the continental tectosphere is approximately unity.  相似文献   
54.
Persistent economic growth in Chinese southwestern Yunnan Province is setting aquatic ecosystems in its plateau lakes under enormous pressure. While several different systems have previously been used to study these lakes, no existing methodology adequately measures both the chemical and biotic parameters of these water bodies. Here, we present a novel Biotic Monitoring Yunnan Lakes (BMYL) index that provides a general assessment tool for ecological deterioration that is caused by organic pollution. Principal Component Analysis is used to analyze the occurrence of families of macroinvertebrates and chemical properties of the lakes. In brief, families of macroinvertebrates were given a score from 10 to 1 based on sensitivity to organic enrichment and eutrophication. Sampling at each lake yielded an Average Score per Lake (ASPL) which is calculated by dividing the total BMYL by the total number of scoring families. High ASPL values characterize a biologically intact lake containing relatively large numbers of high scoring taxa, while lower ASPL values denote a polluted lake that does not support many high scoring taxa. The results of the BMYL show a notably more accurate characterization of the long-term health of concerned aquatic ecosystems than studies that use abundance levels of species or a simple analysis of chemical parameter.  相似文献   
55.
The porous near-surface layer of the Earth's crust – the critical zone – constitutes a vital reservoir of water for ecosystems, provides baseflow to streams, guides recharge to deep aquifers, filters contaminants from groundwater, and regulates the long-term evolution of landscapes. Recent work suggests that the controls on regolith thickness include climate, tectonics, lithology, and vegetation. However, the relative paucity of observations of regolith structure and properties at landscape scales means that theoretical models of critical zone structure are incompletely tested. Here we present seismic refraction and electrical resistivity surveys that thoroughly characterize subsurface structure in a small catchment in the Santa Catalina Mountains, Arizona, USA, where slope-aspect effects on regolith structure are expected based on differences in vegetation. Our results show a stark contrast in physical properties and inferred regolith thickness on opposing slopes, but in the opposite sense of that expected from environmental models and observed vegetation patterns. Although vegetation (as expressed by normalized difference vegetation index [NDVI]) is denser on the north-facing slope, regolith on the south-facing slope is four times thicker (as indicated by lower seismic velocities and resistivities). This contrast cannot be explained by variations in topographic stress or conventional hillslope morphology models. Instead, regolith thickness appears to be controlled by metamorphic foliation: regolith is thicker where foliation dips into the topography, and thinner where foliation is nearly parallel to the surface. We hypothesize that, in this catchment, hydraulic conductivity and infiltration capacity control weathering: infiltration is hindered and regolith is thin where foliation is parallel to the surface topography, whereas water infiltrates deeper and regolith is thicker where foliation intersects topography at a substantial angle. These results suggest that bedrock foliation, and perhaps by extension sedimentary layering, can control regolith thickness and must be accounted for in models of critical zone development. © 2020 John Wiley & Sons, Ltd.  相似文献   
56.
Surface water flooding (SWF) is a recurrent hazard that affects lives and livelihoods. Climate change is projected to change the frequency of extreme rainfall events that can lead to SWF. Increasingly, data from Regional Climate Models (RCMs) are being used to investigate the potential water-related impacts of climate change; such assessments often focus on broad-scale fluvial flooding and the use of coarse resolution (>12 km) RCMs. However, high-resolution (<4 km) convection-permitting RCMs are now becoming available that allow impact assessments of more localised SWF to be made. At the same time, there has been an increasing demand for more robust and timely real-time forecast and alert information on SWF. In the UK, a real-time SWF Hazard Impact Model framework has been developed. The system uses 1-km gridded surface runoff estimates from a hydrological model to simulate the SWF hazard. These are linked to detailed inundation model outputs through an Impact Library to assess impacts on property, people, transport, and infrastructure for four severity levels. Here, a set of high-resolution (1.5 km and 12 km) RCM data has been used as input to a grid-based hydrological model over southern Britain to simulate Current (1996–2009) and Future (~2100s; RCP8.5) surface runoff. Counts of threshold-exceedance for surface runoff and precipitation (at 1-, 3- and 6-hr durations) are analysed. Results show that the percentage increases in surface runoff extremes, are less than those of precipitation extremes. The higher-resolution RCM simulates the largest percentage increases, which occur in winter, and the winter exceedance counts are greater than summer exceedance counts. For property impacts, the largest percentage increases are also in winter; however, it is the 12-km RCM output that leads to the largest percentage increase in impacts. The added-value of high-resolution climate model data for hydrological modelling is from capturing the more intense convective storms in surface runoff estimates.  相似文献   
57.
Salt marsh resilience to sea-level rise depends on marsh plain elevation, tidal range, subsurface processes, as well as surface accretion, of which suspended-sediment concentration (SSC) is a critical component. However, spatial and temporal patterns of inorganic sedimentation are poorly quantified within and across Salicornia pacifica (pickleweed)-dominated marshes. We compared vertical accretion rates and re-examined previously published suspended-sediment patterns during dry-weather periods at Seal Beach Wetlands, which is characterized by a mix of Spartina foliosa (cordgrass) and pickleweed, and for Mugu Lagoon, where cordgrass is rare. Mugu Lagoon occurs higher in the tidal frame and receives terrigenous sediment from an adjacent creek. Feldspar marker horizons were established in winter 2013–2014 to measure accretion. Accretion rates at Seal Beach Wetlands and Mugu Lagoon were 6 ± 0.5 mm/year (mean ± SE) and 2 ± 0.3 mm/year. Also, the estimated sediment flux (g/year) across the random feldspar plots was 3.5 times higher at Seal Beach Wetlands. At Mugu Lagoon, accretion was higher near creeks, although not statistically significant. Dry-weather SSC showed similar concentrations at transect locations across sites. During wet weather, however, SSC at Mugu Lagoon increased at all locations, with concentrations decaying farther than 8 m from tidal creek edge. Based on these results from Mugu Lagoon, we conclude accretion patterns are set by infrequent large flooding events in systems where there is a watershed sediment source. Higher accretion rates at Seal Beach Wetlands may be linked to lower-marsh elevations, and thus more frequent inundation, compared with Mugu Lagoon.  相似文献   
58.
Motivated by consideration of the solar tachocline, we derive, via an asymptotic procedure, a new set of equations incorporating velocity shear and magnetic buoyancy into the Boussinesq approximation. We demonstrate, by increasing the magnetic field scale height, how these equations are linked to the magneto-Boussinesq equations of Spiegel and Weiss (Magnetic buoyancy and the Boussinesq approximation. Geophys. Astrophys. Fluid Dyn. 1982, 22, 219–234).  相似文献   
59.
Abstract

This paper is concerned with the dielectrophoretic instability of a spherical shell of fluid. A dielectric fluid, contained in a spherical shell, with rigid boundaries is subjected to a simultaneous radial temperature gradient and radial a.c. electric field. Through the dependence of the dielectric constant on temperature, the fluid experiences a body force somewhat analogous to that of gravity acting on a fluid with density variations. Linear perturbation theory and the assumption of exchange of stabilities lead to an eighth order differential equation in radial dependence of the perturbation temperature. The solution to this equation, satisfying appropriate boundary conditions, yields a critical value of the electrical Rayleigh number and corresponding critical wave number at which convective motion begins. The dependence of each critical number is presented as a function of the gap size and temperature gradient. In the limit of zero shell thickness both the critical Rayleigh number and critical wave number agree with results for the case in the infinite plane problem.  相似文献   
60.
Abstract

The superconducting-gravimeter data of Melchior and Ducarme (1986) has been interpreted as internal motion in the Earth's core by Aldridge and Lumb (1987) using a Poincaré model. Several low-order modes with periods of 13–16 hours have been tentatively identified in the core which is taken to be an incompressible, homogeneous fluid within a rigid, rotating container. The identification is based on asymptotic values of the frequencies which change slowly with time while the modes decay with an e-folding time of about 280 days. The slow change in frequency with time implies a small temporal variation in the rotation rate of the core. This mean flow is a nonlinear effect often observed in laboratory experiments designed to excite Poincaré modes. Interaction among modes during free ringdown is also observed in those experiments and apparently in the data of Melchior et al. (1988) as well. Laboratory work thus provides the link to extend the Poincaré model to include viscous and nonlinear effects in order to interpret the gravimetric observations as core modes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号