首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   631篇
  免费   36篇
  国内免费   6篇
测绘学   18篇
大气科学   66篇
地球物理   232篇
地质学   187篇
海洋学   68篇
天文学   53篇
综合类   8篇
自然地理   41篇
  2023年   2篇
  2022年   7篇
  2021年   8篇
  2020年   13篇
  2019年   7篇
  2018年   27篇
  2017年   26篇
  2016年   34篇
  2015年   30篇
  2014年   33篇
  2013年   41篇
  2012年   24篇
  2011年   56篇
  2010年   42篇
  2009年   31篇
  2008年   33篇
  2007年   27篇
  2006年   24篇
  2005年   25篇
  2004年   18篇
  2003年   12篇
  2002年   8篇
  2001年   15篇
  2000年   6篇
  1999年   13篇
  1998年   11篇
  1997年   8篇
  1996年   11篇
  1995年   6篇
  1994年   2篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1990年   7篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   7篇
  1984年   5篇
  1983年   4篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1974年   2篇
  1971年   2篇
  1962年   2篇
  1947年   2篇
  1944年   1篇
  1942年   1篇
  1941年   1篇
排序方式: 共有673条查询结果,搜索用时 15 毫秒
61.
62.
This work assesses the influence of the model physics in present-day regional climate simulations. It is based on a multi-phyiscs ensemble of 30-year long MM5 hindcasted simulations performed over a complex and climatically heterogeneous domain as the Iberian Peninsula. The ensemble consists of eight members that results from combining different parametrization schemes for modeling the Planetary Boundary Layer, the cumulus and the microphysics processes. The analysis is made at the seasonal time scale and focuses on mean values and interannual variability of temperature and precipitation. The objectives are (1) to evaluate and characterize differences among the simulations attributable to changes in the physical options of the regional model, and (2) to identify the most suitable parametrization schemes and understand the underlying mechanisms causing that some schemes perform better than others. The results confirm the paramount importance of the model physics, showing that the spread among the various simulations is of comparable magnitude to the spread obtained in similar multi-model ensembles. This suggests that most of the spread obtained in multi-model ensembles could be attributable to the different physical configurations employed in the various models. Second, we obtain that no single ensemble member outperforms the others in every situation. Nevertheless, some particular schemes display a better performance. On the one hand, the non-local MRF PBL scheme reduces the cold bias of the simulations throughout the year compared to the local Eta model. The reason is that the former simulates deeper mixing layers. On the other hand, the Grell parametrization scheme for cumulus produces smaller amount of precipitation in the summer season compared to the more complex Kain-Fritsch scheme by reducing the overestimation in the simulated frequency of the convective precipitation events. Consequently, the interannual variability of precipitation (temperature) diminishes (increases), which implies a better agreement with the observations in both cases. Although these features improve in general the accuracy of the simulations, controversial nuances are also highlighted.  相似文献   
63.
We investigate the temporal patterns in inter-annual variability in ice breakup dates for Lakes Mendota and Monona, Wisconsin, between 1905 and 2004. We analyze the contributions of long-term trends attributed to climate change, local weather, indices of sunspots, and large-scale climatic drivers, such as the North Atlantic Oscillation (NAO) and El Niňo Southern Ocean Index (ENSO) on time series of lake-ice breakup. The relative importance of the aforementioned explanatory variables was assessed using linear regression and variation partitioning models accounting for cyclic temporal dynamics as represented by Moran Eigenvector Maps (MEM). Model results explain an average of 58 % of the variation in ice breakup dates. A combination of the long-term linear trends, rain and snowfall in the month prior to breakup, air temperature in the winter prior to breakup, cyclic dynamics associated with sunspot numbers, ENSO, and for Lake Mendota, NAO, all significantly influence the timing of ice breakup. Significant cycle lengths were 3.5, 9, 11, and 50 years. Despite their proximity, Lakes Mendota and Monona exhibit differences in how and which explanatory variables were incorporated into the models. Our results indicate that lake ice dynamics are complex in both lakes and multiple interacting processes explain the residuals around the linear warming trends that characterize lake ice records.  相似文献   
64.
Decadal variability in the climate system from the Atlantic Multidecadal Oscillation (AMO) is one of the major sources of variability at this temporal scale that climate models must properly incorporate because of its climate impact. The current analysis of historical simulations of the twentieth century climate from models participating in the CMIP3 and CMIP5 projects assesses how these models portray the observed spatiotemporal features of the sea surface temperature (SST) and precipitation anomalies associated with the AMO. A short sample of the models is analyzed in detail by using all ensembles available of the models CCSM3, GFDL-CM2.1, UKMO-HadCM3, and ECHAM5/MPI-OM from the CMIP3 project, and the models CCSM4, GFDL-CM3, UKMO-HadGEM2-ES, and MPI-ESM-LR from the CMIP5 project. The structure and evolution of the SST anomalies of the AMO have not progressed consistently from the CMIP3 to the CMIP5 models. While the characteristic period of the AMO (smoothed with a binomial filter applied fifty times) is underestimated by the three of the models, the e-folding time of the autocorrelations shows that all models underestimate the 44-year value from observations by almost 50 %. Variability of the AMO in the 10–20/70–80 year ranges is overestimated/underestimated in the models and the variability in the 10–20 year range increases in three of the models from the CMIP3 to the CMIP5 versions. Spatial variability and correlation of the AMO regressed precipitation and SST anomalies in summer and fall indicate that models are not up to the task of simulating the AMO impact on the hydroclimate over the neighboring continents. This is in spite of the fact that the spatial variability and correlations in the SST anomalies improve from CMIP3 to CMIP5 versions in two of the models. However, a multi-model mean from a sample of 14 models whose first ensemble was analyzed indicated there were no improvements in the structure of the SST anomalies of the AMO or associated regional precipitation anomalies in summer and fall from CMIP3 to CMIP5 projects.  相似文献   
65.
This paper summarizes 17 talks presented during the Technological sessions at the “Challenges in UV Astronomy” conference. It is based on summaries submitted by the presenters, on the slides of their talks, on notes written by the authors, and on additional material kindly submitted to the lead author. In many instances the summaries were written by the presenters themselves and are included as-submitted to the authors with just minor editorial interference. In other cases one of the editors wrote the summary based on their notes and on the files of the actual presentations. The contributions are placed in the general context of the current knowledge in the field. The sessions were devoted to: [a] detectors, [b] optics, [c] integration and verification procedures for vacuum UV instruments and [d] calibration and archival research. A cautionary note: this is not a regular article in these proceedings presenting one idea, an experiment, of a result. It is rather a distillation of what was presented at the NUVA/ESO/IAG meeting at the sessions deemed technological, therefore it will lack an overall coherence although the individual sections and subsections should be logically connected.  相似文献   
66.
We have used the thermodynamic model of the climate to estimate the effect of variations in the oceanic cloud cover on the surface temperature of the Earth in the North Hemisphere (NH) during the period 1984–1990. We assume that the variations in the cloud cover are proportional to the variation of the cosmic ray flux measured during the same period. The results indicate that the effect in the temperature is slightly noticeable when we consider the surface hemispheric temperature on July 1987, finding an average temperature anomaly between −0.06°C and −0.14°C, along a latitudinal band between 20° and 40°. The surface temperature averaged globally in the NH presents a decrease of 0.01°C in average, which is almost the same for continents and oceans. However, these values are not significant when compared to the overall variability of the time series with and without forcing.  相似文献   
67.
The Breves deposit in the Carajás Copper-Gold Belt, Brazil, a member of the Cu-Au-(W-Bi-Sn) group of deposits, contains about 50 Mt of 1.22% Cu, 0.75 g/t Au, 2.4 g/t Ag, 1,200 g/t W, 70 g/t Sn, 175 g/t Mo and 75 g/t Bi. It is hosted by sandstones and siltstones of the Águas Claras Formation (minimum age of 2,681±5 Ma) in the roof zone of a complex, highly altered granite intrusion. The mineralisation is disseminated in a greisenized zone, resulting from alteration of probable monzogranites and syenogranites. The ore-bearing greisen contains abundant xenomorphic quartz in association with Fe-chlorite and muscovite. The gangue assemblage also includes fluorite, tourmaline, and minor amounts of monazite, xenotime, chlorapatite, thorite, zircon, calcite, siderite and bastnäesite. Copper mineralisation is dominated by chalcopyrite associated with pyrite, arsenopyrite, pyrrhotite and molybdenite. Gold particles, in equilibrium with native bismuth, are common as inclusions in chalcopyrite. The greisen contains sub-economic concentrations of tungsten and niobium that are related to the presence of ferberite, qitianlingite and Nb-rutile. SHRIMP II zircon dating of the host granites gives 207Pb/206Pb ages of 1,878±8 and 1,880±9 Ma for two phases, and a combined age of 1,879±6 Ma. SHRIMP II dating of monazite and xenotime grains in late- to post-mineralisation veins gives a combined 207Pb/206Pb age of 1,872±7 Ma, indistinguishable from the ages of the granites. This provides a genetic connection between the Breves deposit and the ca. 1.88 Ga A-type granite magmatism that typifies the Carajás Belt as part of a much larger, intracratonic magmatic province that extends over much of the Amazonian Craton. The recognition of this association has exploration implications, not only for the geophysical signature of the granite roof zones, but also for likely geochemical dispersion around the deposits of this type.Editorial handling: G. Beaudoin  相似文献   
68.
Saez JA  Harmon TC 《Ground water》2006,44(2):244-255
This work focuses on improving pump-and-treat remediation by optimizing a two-stage operational scheme to reduce volumes extracted when confronted with nonequilibrium desorption, low-permeability units, and continuous contaminant sources such as non-aqueous phase liquids (NAPL). Q1 and Q2 are the initial short-term high pumping rate and later long-term low pumping rate, respectively. A two-dimensional ground water flow and transport management model was used to test the proposed strategy for plumes developed from finite (NAPL-free) and continuous (NAPL-driven) contaminant sources in homogeneous and nonhomogeneous (zoned) aquifers. Remediation scenarios were simulated over durations of 2000, 6000, and 15,000 d to determine (1) the optimal time to switch from a preset Q1 to Q2 and (2) the value of Q2. The problem was constrained by mass removal requirements, maximum allowable downgradient concentrations, and practical bounds on Q2. Q1 was fixed at preset values 50% to 200% higher than the single-stage pumping rates (i.e., steady pumping rates during entire remediation period) necessary to achieve a desired cleanup level and capture the plume. Results for the NAPL-free homogeneous case under nonequilibrium desorption conditions achieved the same level of cleanup as single-stage pumping, while reducing extracted volumes by up to 36%. Comparable savings were obtained with NAPL-driven sources only when the source concentration was reduced by at least 2 orders of magnitude. For the zoned aquifer, the proposed strategy provided volume savings of up to 24% under NAPL-free and reduced source conditions.  相似文献   
69.
The emergence of low-frequency, high-amplitude, quasi-periodic (100-kyr) glacial variability during the middle Pleistocene in the absence of any significant change in orbital forcing indicates a fundamental change internal to the climate system. This middle Pleistocene transition (MPT) began 1250 ka and was complete by 700 ka. Its onset was accompanied by decreases in sea surface temperatures (SSTs) in the North Atlantic and tropical-ocean upwelling regions and by an increase in African and Asian aridity and monsoonal intensity. During the MPT, long-term average ice volume gradually increased by 50 m sea-level equivalent, whereas low-frequency ice-volume variability experienced a 100-kyr lull centered on 1000 ka followed by its reappearance 900 ka, although as a broad band of power rather than a narrow, persistent 100-kyr cycle. Additional changes at 900 ka indicate this to be an important time during the MPT, beginning with an 80-kyr event of extreme SST cooling followed by the partial recovery and subsequent stabilization of long-term North Atlantic and tropical ocean SSTs, increasing Southern Ocean SST variability primarily associated with warmer interglacials, the loss of permanent subpolar sea-ice cover, and the emergence of low-frequency variability in Pacific SSTs and global deep-ocean circulation. Since 900 ka, ice sheets have been the only component of the climate system to exhibit consistent low-frequency variability. With the exception of a near-universal organization of low-frequency power associated with marine isotope stages 11 and 12, all other components show an inconsistent distribution of power in frequency-time space, suggesting a highly nonlinear system response to orbital and ice-sheet forcing.Most hypotheses for the origin of the MPT invoke a response to a long-term cooling, possibly induced by decreasing atmospheric pCO2. None of these hypotheses, however, accounts for the geological constraint that the earliest Northern Hemisphere ice sheets covered a similar or larger area than those that followed the MPT. Given that the MPT was associated with an increase in ice volume, this constraint requires that post-MPT ice sheets were substantially thicker than pre-MPT ice sheets, indicating a change in subglacial conditions that influence ice dynamics. We review evidence in support of the hypothesis that such an increase in ice thickness occurred as crystalline Precambrian Shield bedrock became exposed by glacial erosion of a thick mantle of regolith. This exposure of a high-friction substrate caused thicker ice sheets, with an attendant change in their response to the orbital forcing. Marine carbon isotope data indicate a rapid transfer of organic carbon to inorganic carbon in the ocean system during the MPT. If this carbon came from terrigenous sources, an increase in atmospheric pCO2 would be likely, which is inconsistent with evidence for widespread cooling, Apparently rapid carbon transfer from terrestrial sources is difficult to reconcile with gradual erosion of regolith. A more likely source of organic carbon and nutrients (which would mitigate pCO2 rise) is from shelf and upper slope marine sediments, which were fully exposed for the first time in millions of years in response to thickening ice sheets and falling sealevels during the MPT. Modeling indicates that regolith erosion and resulting exposure of crystalline bedrock would cause an increase in long-term silicate weathering rates, in good agreement with marine Sr and Os isotopic records. We use a carbon cycle model to show that a post-MPT increase in silicate weathering rates would lower atmospheric pCO2 by 7–12 ppm, suggesting that the attendant cooling may have been an important feedback in causing the MPT.  相似文献   
70.
This paper analyzes changes of maximum temperatures in Europe, which are evaluated using two state-of-the-art regional climate models from the EU ENSEMBLES project. Extremes are expressed in terms of return values using a time-dependent generalized extreme value (GEV) model fitted to monthly maxima. Unlike the standard GEV method, this approach allows analyzing return periods at different time scales (monthly, seasonal, annual, etc). The study focuses on the end of the 20th century (1961?C2000), used as a calibration/validation period, and assesses the changes projected for the period 2061?C2100 considering the A1B emission scenario. The performance of the regional models is evaluated for each season of the calibration period against the high-resolution gridded E-OBS dataset, showing a similar South-North gradient with larger values over the Mediterranean basin. The inter-RCM changes in the bias pattern with respect to the E-OBS are larger than the bias resulting from a change in the boundary conditions from ERA-40 to ECHAM5 20c3m. The maximum temperature response to increased green house gases, as projected by the A1B scenario, is consistent for both RCMs. Under that scenario, results indicate that the increments for extremes (e.g. 40-year return values) will be two or three times higher than those for the mean seasonal temperatures, particularly during Spring and Summer in Southern Europe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号