首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1590篇
  免费   63篇
  国内免费   26篇
测绘学   58篇
大气科学   125篇
地球物理   346篇
地质学   546篇
海洋学   117篇
天文学   335篇
综合类   8篇
自然地理   144篇
  2022年   23篇
  2021年   22篇
  2020年   26篇
  2019年   24篇
  2018年   52篇
  2017年   54篇
  2016年   38篇
  2015年   40篇
  2014年   48篇
  2013年   84篇
  2012年   46篇
  2011年   68篇
  2010年   72篇
  2009年   76篇
  2008年   70篇
  2007年   64篇
  2006年   63篇
  2005年   41篇
  2004年   52篇
  2003年   41篇
  2002年   57篇
  2001年   27篇
  2000年   36篇
  1999年   22篇
  1998年   28篇
  1997年   26篇
  1996年   17篇
  1995年   21篇
  1994年   14篇
  1993年   18篇
  1992年   23篇
  1991年   14篇
  1990年   14篇
  1989年   10篇
  1987年   21篇
  1986年   17篇
  1985年   23篇
  1984年   30篇
  1983年   27篇
  1982年   33篇
  1981年   24篇
  1980年   25篇
  1979年   22篇
  1978年   9篇
  1977年   15篇
  1976年   16篇
  1975年   8篇
  1974年   15篇
  1973年   9篇
  1971年   8篇
排序方式: 共有1679条查询结果,搜索用时 656 毫秒
991.
To assess the extent to which Hurricanes Katrina and Rita affected polycyclic aromatic hydrocarbons (PAH) in the Gulf of Mexico (GOM), sediment cores were analyzed in late 2005 from: a shallow shelf, a deeper shelf, and a marsh station. Sediment geochronology, fabric, and geochemistry show that the 2005 storms deposited ∼10 cm of sediment to the surface of a core at 5-12A. Bulk carbon geochemistry and PAH isomers in this top layer suggest that the source of sediment to the top portion of core 5-12A was from a relatively more marine area. Particulate PAHs in the marsh core (04 M) appeared unaffected by the storms while sediments in the core from Station 5-1B (deeper shelf) were affected minimally (some possible storm-derived deposition). Substantial amounts of PAH-laden particles may have been displaced from the seabed in shallow areas of the water column in the GOM by these 2005 storms.  相似文献   
992.
Exploration in the basalt covered areas of the Faroes offshore has always suffered from poor seismic imaging below the basalt. Long offset 2D and 3D seismic data were acquired and a significant improvement in the seismic image below top basalt has been achieved. Deep towing of the source and receiver cables helped by extending the seismic bandwidth towards lower frequencies. Bubble‐tuned rather than conventional peak‐tuned source arrays gave little, if any, incremental benefit. The improvement in the imaging comes primarily from the approach to processing the data. High frequencies (dominantly noise) are filtered out of the data early in the processing to concentrate on the low frequency data. Careful multiple removal is important with several passes of demultiple being applied to the data using both Surface‐Related Multiple Elimination (SRME) and Radon techniques. Velocity analysis is performed as an iterative process taking into account the geological model. Reprocessing legacy 2D surveys, acquired with wide‐ranging parameters, using these processing techniques improved these datasets significantly, indicating that sub‐basalt imaging seems to be more sensitive to processing than to the choice of acquisition parameters.  相似文献   
993.
Turbulence measurements were collected in the bottom boundary layer of the California inner shelf near Point Sal, CA, for 2 months during summer 2015. The water column at Point Sal is stratified by temperature, and internal bores propagate through the region regularly. We collected velocity, temperature, and turbulence data on the inner shelf at a 30-m deep site. We estimated the turbulent shear production (P), turbulent dissipation rate (ε), and vertical diffusive transport (T), to investigate the near-bed local turbulent kinetic energy (TKE) budget. We observed that the local TKE budget showed an approximate balance (P?≈?ε) during the observational period, and that buoyancy generally did not affect the TKE balance. On a finer resolution timescale, we explored the balance between dissipation and models for production and observed that internal waves did not affect the balance in TKE at this depth.  相似文献   
994.
The choice of a river training strategy is extremely important for the Lower Yellow River (LYR). Currently, the wide-river training strategy applies in the training of the LYR. However, remarkable changes in the hydrological processes in the Yellow River basin, as well as immediate pressure from socio-economic development in the Yellow River basin, make it necessary to consider if there is a possibility to change the river training strategy from wide-river training to narrow-river training. This research investigates the impacts of different river training strategies on the LYR through numerical simulations. A one-dimensional (1-D) model was used to simulate the fluvial processes for the future 50 years and a three-dimensional (3-D) model was applied to study typical floods. The study focused on river morphology, the results show that if the present decreasing trend in both water discharge and sediment load persists, the deposition rate in the LYR will further decrease no matter what strategy is applied. Especially, narrow-river training can achieve the aim to increase the sediment transport capacity in the LYR compared with wide-river training. However, if the incoming water and sediment load recovers to the mean level of the last century, main channel shrinkage due to sedimentation inevitably occurs for both wide-river and narrow-river training. Most importantly, this study shows that narrow-river training reduces the deposition amount over the whole LYR, but it provides little help in alleviating the development of the “suspended river”. Instead, narrow-river training can cause aggradation in the transitional reach where the river pattern changes from highly wandering to meandering, further worsening the “hump deposition” there. Because of uncertainty regarding future changes in hydrological processes in the Yellow River basin, and the lack of feasible engineering measures to mitigate “suspended river” and “hump deposition” problems in the LYR, caution should be exercised with respect to changes in the river training strategy for the LYR.  相似文献   
995.
Stream ecosystems can be dramatically altered by dam-building activities of North American beaver (Castor canadensis). The extent to which beavers’ ecosystem engineering alters riverscapes is driven by the density, longevity, and size (i.e. height and length) of the dams constructed. In comparison to the relative ubiquity of beaver dams on the landscape, there is a scarcity of data describing dam heights. We collected data describing dam height and dam condition (i.e. damaged or intact) of 500 beaver dams via rapid field survey, differentiating between primary and secondary dams and associating each dam with a beaver dam complex. With these data, we examined the influence of beaver dam type (primary/secondary), drainage area, streamflow, stream power, valley bottom width, and HUC12 watershed on beaver dam height with linear regression and the probability that a beaver dam was damaged with logistic regression. On average, primary dams were 0.46 m taller than secondary dams; 15% of observed dams were primary and 85% secondary. Dam type accounted for 21% of dam height variation (p <0.0001). Slope (p = 0.0107), discharge (p = 0.0029), and drainage area (p = 0.0399) also affected dam height, but each accounted for less than 3% of dam height variation. The average number of dams in a dam complex was 6.1 (SD ± 4.5) and ranged from 1 to 21. The watershed a beaver dam was located in accounted for the most variability (17.8%) in the probability that a beaver dam was damaged, which was greater than the variability explained by any multiple logistic regression model. These results indicate that temporally dynamic variables are important influencers of dam longevity and that beaver dam ecology is a primary factor influencing beaver dam height. © 2020 John Wiley & Sons, Ltd.  相似文献   
996.
997.
Most of the studies on Artificial Neural Network (ANN) models remain restricted to smaller rivers and catchments. In this paper, an attempt has been made to correlate variability of sediment loads with rainfall and runoff through the application of the Back Propagation Neural Network (BPNN) algorithm for a large tropical river. The algorithm and simulation are done through MATLAB environment. The methodology comprised of a collection of data on rainfall, water discharge, and sediment discharge for the Narmada River at various locations (along with time variables) and application to develop a threelayer BPNN model for the prediction of sediment discharges. For training and validation purposes a set of 549 data points for the monsoon (16 June-15 November) period of three consecutive years (1996–1998) was used. For testing purposes, the BPNN model was further trained using a set of 732 data points of monsoon season of four years (2006–07 to 2009–10) at nine stations. The model was tested by predicting daily sediment load for the monsoon season of the year 2010–11. To evaluate the performance of the BPNN model, errors were calculated by comparing the actual and predicted loads. The validation and testing results obtained at all these locations are tabulated and discussed. Results obtained from the model application are robust and encouraging not only for the sub-basins but also for the entire basin. These results suggest that the proposed model is capable of predicting the daily sediment load even at downstream locations, which show nonlinearity in the transportation process. Overall, the proposed model with further training might be useful in the prediction of sediment discharges for large river basins.  相似文献   
998.
999.
The James Ross Basin, in the northern Antarctic Peninsula, exposes which is probably the world thickest and most complete Late Cretaceous sedimentary succession of southern high latitudes. Despite its very good exposures and varied and abundant fossil fauna, precise chronological determination of its infill is still lacking. We report results from a magnetostratigraphic study on shelfal sedimentary rocks of the Marambio Group, southeastern James Ross Basin, Antarctica. The succession studied covers a ~1,200 m‐thick stratigraphic interval within the Hamilton Point, Sanctuary Cliffs and Karlsen Cliffs Members of the Snow Hill Island Formation, the Haslum Crag Formation, and the lower López de Bertodano Formation. The basic chronological reference framework is given by ammonite assemblages, which indicate a Late Campanian – Early Maastrichtian age for the studied units. Magnetostratigraphic samples were obtained from five partial sections located on James Ross and Snow Hill islands, the results from which agree partially with this previous biostratigraphical framework. Seven geomagnetic polarity reversals are identified in this work, allowing to identify the Chron C32/C33 boundary in Ammonite Assemblage 8‐1, confirming the Late Campanian age of the Hamilton Point Member. However, the identification of the Chron C32/C31 boundary in Ammonite Assemblage 8‐2 assigns the base of the Sanctuary Cliffs Member to the early Maastrichtian, which differs from the Late Campanian age previously assigned by ammonite biostratigraphy. This magnetostratigraphy spans ~14 Ma of sedimentary succession and together with previous partial magnetostratigraphies on Early‐Mid Campanian and Middle Maastrichtian to Danian columns permits a complete and continuous record of the Late Cretaceous distal deposits of the James Ross Basin. This provides the required chronological resolution to solve the intra‐basin and global correlation problems of the Late Cretaceous in the Southern Hemisphere in general and in the Weddellian province in particular, given by endemism and diachronic extinctions on invertebrate fossils, including ammonites. The new chronostratigraphic scheme allowed us to calculate sediment accumulation rates for almost the entire Late Cretaceous infill of the distal James Ross Basin (the Marambio Group), showing a monotonous accumulation for more than 8 Myr during the upper Campanian and a dramatic increase during the early Maastrichtian, controlled by tectonic and/or eustatic causes.  相似文献   
1000.
The first post-Newtonian approximation of general relativity is used to account for the motion of solar system bodies and near-Earth objects which are slow moving and produce weak gravitational fields. The \(n\)-body relativistic equations of motion are given by the Einstein-Infeld-Hoffmann equations. For \(n=2\), we investigate the associated dynamics of two-body systems in the first post-Newtonian approximation. By direct integration of the associated planar equations of motion, we deduce a new expression that characterises the orbit of test particles in the first post-Newtonian regime generalising the well-known Binet equation for Newtonian mechanics. The expression so obtained does not appear to have been given in the literature and is consistent with classical orbiting theory in the Newtonian limit. Further, the accuracy of the post-Newtonian Binet equation is numerically verified by comparing secular variations of known expression with the full general relativistic orbit equation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号