首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6896篇
  免费   874篇
  国内免费   519篇
测绘学   324篇
大气科学   936篇
地球物理   2366篇
地质学   2912篇
海洋学   499篇
天文学   416篇
综合类   360篇
自然地理   476篇
  2024年   9篇
  2023年   36篇
  2022年   104篇
  2021年   123篇
  2020年   105篇
  2019年   100篇
  2018年   525篇
  2017年   485篇
  2016年   372篇
  2015年   256篇
  2014年   232篇
  2013年   235篇
  2012年   749篇
  2011年   542篇
  2010年   201篇
  2009年   243篇
  2008年   205篇
  2007年   198篇
  2006年   195篇
  2005年   885篇
  2004年   914篇
  2003年   693篇
  2002年   209篇
  2001年   105篇
  2000年   76篇
  1999年   78篇
  1998年   49篇
  1997年   71篇
  1996年   36篇
  1995年   29篇
  1994年   28篇
  1993年   20篇
  1992年   31篇
  1991年   30篇
  1990年   20篇
  1989年   18篇
  1988年   8篇
  1987年   7篇
  1986年   7篇
  1983年   5篇
  1982年   3篇
  1980年   5篇
  1979年   3篇
  1976年   3篇
  1975年   4篇
  1965年   3篇
  1955年   2篇
  1954年   2篇
  1951年   2篇
  1948年   2篇
排序方式: 共有8289条查询结果,搜索用时 15 毫秒
981.
Cosmological shock waves are induced during hierarchical formation of large-scale structure in the universe. Like most astrophysical shocks, they are collisionless, since they form in the tenuous intergalactic medium through electromagnetic viscosities. The gravitational energy released during structure formation is transferred by these shocks to the intergalactic gas as heat, cosmic-rays, turbulence, and magnetic fields. Here we briefly described the properties and consequences of the shock waves in the context of the large-scale structure of the universe.  相似文献   
982.
The thesis concentrates on an analysis of the experimental data as well as numerical simulation of propagation of fast forward (FF) shocks in the solar wind and their evolution through the magnetosheath to the inner magnetosphere. The thesis was defended at the Charles University, Prague, Faculty of Mathematics and Physics, Department of Plasma and Surface Science (V Holesovickach 2, 180 00 Prague 8, Czech Republic) on September 30, 2008 under supervision of Doc. Lubomír P?ech. The thesis is written in English and a resume can be found at http://physics.mff.cuni.cz/kfpp/phd/andreeova.pdf.  相似文献   
983.
One possibility to explore the subsurface layers of icy bodies is to use a probe with a “hot tip", which is able to penetrate ice layers by melting. Such probes have been built and used in the past for the exploration of terrestrial polar ice sheets and may also become useful tools to explore other icy layers in the Solar System. Examples for such layers are the polar areas of Mars or the icy crust of Jupiter’s moon Europa. However, while on Earth a heated probe launched into an ice sheet always causes melting with subsequent refreezing, the behaviour of such a probe in a low pressure environment is quite different. We report on the results of some experiments with a simple “melting probe" prototype with two different kinds of hot tips in a vacuum environment. For one of the tips the probe moved into two types of ice samples: (i) compact water ice and (ii) porous water ice with a snow (firn) like texture. It was also found that the penetration behaviour was basically different for the two sample types even when the same kind of tip was used. While in the porous sample the ice was only subliming, the phase changes occurring during the interaction of the tip with the compact ice are much more complex. Here alternating phases of melting and sublimation occur. The absence of the liquid phase has severe consequences on the performance of a “melting probe" under vacuum conditions: In this environment we find a high thermal resistance between the probe surface and the underlying ice. Therefore, only a low percentage of the heat that is generated in the tip is used to melt or sublime the ice, the bulk of the power is transferred towards the rear end of the probe. This is particularly a problem in the initial phases of an ice penetration experiment, when the probe has not yet penetrated the ice over its whole length. In the compact ice sample, phases could be observed, where a high enough gas pressure had built up locally underneath the probe, so that melting becomes possible. Only during these melting periods the thermal contact between the probe and the ice is good and in consequence the melting probe works effectively.  相似文献   
984.
A fractal study method of the number of geological mass fractures is introduced in detail in this paper. Three main aspects of the problem were studied: (1) The random distribution of fractures in a geological mass was in good agreement with the fractal law. The size scale of the studied geological mass ranged from 2400 m to 1 mm for the length of each side, and the geological mass samples were taken from 13 coal areas in China. (2) The geological mass fractures were evidently directional and anisotropic, having originated from tectonic movement. Observation and statistics for the data from the Xuangang, Fenxi and Dongshan coal areas in Shanxi, China, demonstrated that the fracture distribution of each group, classified by the strike of the strata, still follow the fractal law, even though the fractal dimension varies to a certain extent with different strikes. (3) The sedimentary strata containing the coal seams, as a geological mass, underwent almost similar tectonic movements in their geological history. The mechanical experiments on geological mass samples from Fenxi and Jiexiu in Shanxi demonstrated that the fractal dimension of the number of fractures in the same strata is in good power function with the product of strength and elastic modulus. The larger the product of the strength of the elastic modulus is, the larger is the fractal dimension, and vice versa.  相似文献   
985.
Over a period of a year, Hg0-reactive, total reduced sulfur species (RSST), as well as a non-volatile fraction that cannot be gas-stripped at pH ∼2 (RSSNV), have been measured by voltammetry in a stratified, saline lake. In the hypolimnion, RSST is dominated by unusually high (up to 5 mM) dissolved divalent sulfur (S−II), present as H2S + HS and as inorganic polysulfides (HxSnx−2). Less abundant RSSNV is attributed to dissolved zero-valent sulfur (S0) in inorganic polysulfides. Assuming negligible contribution of organic S0 species in the hypolimnion, the equilibrium distribution of polysulfide ions is calculated; S52− is found to predominate. In the epilimnion, all RSST consists of RSSNV within analytical uncertainty. Through spring and summer, RSST and RSSNV display little vertical or seasonal variation, but they increase dramatically when stratification breaks down in autumn. Based on decay rate, RSS during mixing events is attributed to dissolved S8 from oxidation of sulfide and decomposition of inorganic polysulfides. This hypothesis quantitatively predicts precipitation of elemental sulfur in a year when colloidal sulfur was observed and predicts no precipitation in a year when it was not observed. Except during mixing events, the entire water column is undersaturated with respect to both rhombic sulfur and biologic sulfur, and the limited variations of RSS exclude hydrophobic and volatile aqueous S8 as a major species. During such periods, RSS (typically 8 nM) may be associated with organic carbon, perhaps as adsorbed S8 or as covalently bound polysulfanes or polysulfides. The hypolimnion is viewed as a zero-valent sulfur reactor that creates S0-containing, dissolved organic macromolecules during stable stratification periods. Some are sufficiently degradation-resistant and hydrophilic to be dispersed throughout the lake during mixing events, subsequently giving rise to ∼10−8 M RSS in the oxic water column. Voltammetrically determined RSS in oxic natural waters has often been described as “sulfide” or “metal complexed sulfide”, implying an oxidation state of S−II; we argue that RSS in oxic Rogoznica Lake waters is mainly S0.  相似文献   
986.
Alluvial and colluvial gem sapphires are common in the basaltic fields of the French Massif Central (FMC) but sapphire-bearing xenoliths are very rare, found only in the Menet trachytic cone in Cantal. The O-isotope composition of the sapphires ranges between 4.4 and 13.9‰. Two distinct groups have been defined: the first with a restricted isotopic range between 4.4 and 6.8‰ (n = 22; mean δ18O = 5.6 ± 0.7‰), falls within the worldwide range defined for blue-green-yellow sapphires related to basaltic gem fields (3.0 < δ18O < 8.2‰, n = 150), and overlaps the ranges defined for magmatic sapphires in syenite (4.4 < δ18O < 8.3‰, n = 29). A second group, with an isotopic range between 7.6 and 13.9‰ (n = 9), suggests a metamorphic sapphire source such as biotite schist in gneisses or skarns. The δ18O values of 4.4–4.5‰ for the blue sapphire-bearing anorthoclasite xenolith from Menet is lower than the δ18O values obtained for anorthoclase (7.7–7.9‰), but suggest that these sapphires were derived from an igneous reservoir in the subcontinental spinel lherzolitic mantle of the FMC. The presence of inclusions of columbite-group minerals, pyrochlore, Nb-bearing rutile, and thorite in these sapphires provides an additional argument for a magmatic origin. In the FMC lithospheric mantle, felsic melts crystallized to form anorthoclasites, the most evolved peraluminous variant of the alkaline basaltic melt. The O-isotopic compositions of the first group suggests that these sapphires crystallized from felsic magmas under upper mantle conditions. The second group of isotopic values, typified for example by the Le Bras sapphire with a δ18O of 13.9‰, indicates that metamorphic sapphires from granulites were transported to the surface by basaltic magma.  相似文献   
987.
Samples of quartz-bearing rocks were heated above the α (trigonal)–β (hexagonal) phase transformation of quartz (625–950°C) to explore changes in preferred orientation patterns. Textures were measured both in situ and ex situ with neutron, synchrotron X-ray and electron backscatter diffraction. The trigonal–hexagonal phase transformation does not change the orientation of c- and a-axes, but positive and negative rhombs become equal in the hexagonal β-phase. In naturally deformed quartzites measured by neutron diffraction a perfect texture memory was observed, i.e. crystals returned to the same trigonal orientation they started from, with no evidence of twin boundaries. Samples measured by electron back-scattered diffraction on surfaces show considerable twinning and memory loss after the phase transformation. In experimentally deformed quartz rocks, where twinning was induced mechanically before heating, the orientation memory is lost. A mechanical model can explain the memory loss but so far it does not account for the persistence of the memory in quartzites. Stresses imposed by neighboring grains remain a likely cause of texture memory in this mineral with a very high elastic anisotropy. If stresses are imposed experimentally the internal stresses are released during the phase transformation and the material returns to its original state prior to deformation. Similarly, on surfaces there are no tractions and thus texture memory is partially lost.  相似文献   
988.
Mineral-specific IR absorption coefficients were calculated for natural and synthetic olivine, SiO2 polymorphs, and GeO2 with specific isolated OH point defects using quantitative data from independent techniques such as proton–proton scattering, confocal Raman spectroscopy, and secondary ion mass spectrometry. Moreover, we present a routine to detect OH traces in anisotropic minerals using Raman spectroscopy combined with the “Comparator Technique”. In case of olivine and the SiO2 system, it turns out that the magnitude of ε for one structure is independent of the type of OH point defect and therewith the peak position (quartz ε = 89,000 ± 15,000  \textl \textmol\textH2\textO-1 \textcm-2\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}), but it varies as a function of structure (coesite ε = 214,000 ± 14,000  \textl \textmol\textH2\textO-1 \textcm-2\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}; stishovite ε = 485,000 ± 109,000  \textl \textmol\textH2\textO-1 \textcm-2\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}). Evaluation of data from this study confirms that not using mineral-specific IR calibrations for the OH quantification in nominally anhydrous minerals leads to inaccurate estimations of OH concentrations, which constitute the basis for modeling the Earth’s deep water cycle.  相似文献   
989.
章斯腾  陆欣  陆瑶  程亮  李满春  杨康 《遥感学报》2021,25(10):2142-2152
河流网络是地表水循环的重要组成部分,如何实现河流网络动态监测已成为河流遥感研究的热点。近年来,以PlanetScope为代表的CubeSat小卫星已具备了米级空间分辨率、1 d重访周期的优势,这为河流网络高时空分辨率动态监测提供了可能。本文以青藏高原长江源区的通天河流域(227 km2)为研究区,选取2017-05—2017-10 5期3 m空间分辨率CubeSat遥感影像,增强河流横纵剖面特征自动化提取了河流网络,研究了通天河流域河流网络动态变化,对比分析了3 m CubeSat与30 m Landsat 8、10 m Sentinel-2所提取的河流网络,以及5种现有水体数据集(GRWL,GSW,FROM-GLC 2017,OpenStreetMap,HydroSHEDS)。研究结果表明:(1)研究区内河流网络5月水系密度较低(0.38 km-1),7—8月河流网络进入丰水期,水系密度显著增加至0.61 km-1,9月河流网络进入平水期,水系密度趋于平稳(0.53 km-1),随后迅速退化并于10月开始冻结,水系密度迅速降低至0.37 km-1;(2)采用高空间分辨率CubeSat所提取的河流网络能够识别更多细小河流(河宽3—30 m),CubeSat所提取的河流总长分别为Landsat 8、Sentinel-2所提取河流总长的1.6倍和1.3倍;(3)CubeSat所提取的河流网络水系密度高于现有水体数据集(2.9—12.4倍),弥补了现有水体数据集无法反映细小河流的不足。  相似文献   
990.
姜亢  胡昌苗  于凯  赵永超 《遥感学报》2014,18(2):287-306
地形校正可以减小地形起伏对地物光谱的影响,提高计算机分类在山区的精度。设计了针对全球土地覆盖分类的Landsat TM/ETM+数据地形校正方法 SCOS(Smoothed COS余弦),首先对地形的坡度角进行抹平处理,很大程度上削弱了地表非朗伯性对地形校正的影响,然后利用简单有效的余弦校正去除地形效应。该方法与其他常用地形校正算法的对比分析是通过对全球不同区域、不同地表覆盖的有代表性的6景Landsat TM/ETM+数据的试验,采用统计分析与目视判读的方式,从过度校正和类内均一性两个方面进行的。结果表明,该方法在目视效果和统计结果上优于常规方法,并且更加简单有效,无需复杂的大气参数及传感器参数,满足全球地表覆盖分类对地形校正的需求。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号