首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   6篇
  国内免费   3篇
测绘学   3篇
地球物理   176篇
地质学   72篇
海洋学   2篇
天文学   23篇
自然地理   8篇
  2021年   4篇
  2017年   8篇
  2016年   6篇
  2014年   4篇
  2013年   11篇
  2012年   8篇
  2011年   9篇
  2009年   11篇
  2008年   10篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2002年   4篇
  2000年   6篇
  1999年   6篇
  1997年   7篇
  1996年   5篇
  1995年   4篇
  1992年   3篇
  1991年   5篇
  1989年   2篇
  1988年   6篇
  1987年   2篇
  1986年   8篇
  1985年   7篇
  1984年   6篇
  1983年   4篇
  1982年   10篇
  1981年   5篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1977年   6篇
  1976年   5篇
  1975年   6篇
  1974年   3篇
  1973年   7篇
  1972年   3篇
  1971年   6篇
  1970年   4篇
  1969年   4篇
  1968年   3篇
  1967年   2篇
  1966年   5篇
  1964年   3篇
  1963年   3篇
  1962年   6篇
  1961年   2篇
  1960年   5篇
  1957年   2篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
281.
Mathematical Geosciences - Even though the logratio methodology provides a range of both generic, mostly exploratory, and purpose-built coordinate representations of compositional data, simple...  相似文献   
282.
During the ascent, emplacement and post-emplacement deformation of igneous rocks, two or more phases of deformation that overprint each other are often depicted. These overprints, when magnetic minerals are present, are recorded in magnetic fabric. In this contribution, overprints are studied by means of numerical modeling, following several basic scenarios common to igneous rocks. Biotite and amphibole that occur often together in igneous rocks are considered as carriers of the anisotropy of magnetic susceptibility. Modeling shows that (1) a constrictional fabric with a low degree of anisotropy as commonly recorded in magmatic rocks may result from a deformation overprint and not necessarily from an extensional/transtensional regime, and (2) that the constrictional AMS fabrics originates from orthogonal superimposition of a deformation event on an AMS fabric inherited from earlier magma emplacement history. Therefore, the interpretation of a constrictional fabric must be performed with caution. Numerical modeling may provide a suitable help in strengthening the interpretation of real magnetic fabric data.  相似文献   
283.
284.
High-pressure (HP) granulites form either in the domain of the subducted plate during continental collision or in supra-subduction systems where the thermally softened upper plate is shortened and thickened. Such a discrepancy in tectonic setting can be evaluated by metamorphic pressure–temperature–time-deformation (P–T–t–D) paths. In the current study, P–T–t–D paths of Early Palaeozoic HP granulite facies rocks, in the form of metabasic lenses enclosed in migmatitic metapelite, from the Dunhuang block, NW China, are investigated in order to constrain the nature of the HP rocks and shed light on the geodynamic evolution of a modern hot orogenic system in an active margin setting. The rocks show a polyphase evolution characterized by (1) relics of horizontal or gently dipping fabric (S1) preserved in cores of granulite lenses and in garnet porphyroblasts, (2) a N-S trending sub-vertical fabric (S2) preserved in low-strain domains and (3) upright folds (F3) associated with a ubiquitous steep E-W striking axial planar foliation (S3). Garnet in the granulites preserves relics of a prograde mineral assemblage M1a equilibrated at ~11.5 kbar and ~770–780°C, whereas the matrix granulite assemblage (M1b) from the S1 fabric attained peak pressure at ~13.5 kbar and ~850°C. The granulites were overprinted at ~8–11 kbar and ~850–900°C during crustal melting (M2) followed by partial re-equilibration (M3) at ~8 kbar and ~625°C. A garnet Lu–Hf age of 421.6 ± 1.2 Ma dates metamorphism M1, while a garnet Sm–Nd age of 385.3 ± 4.0 Ma reflects M3 cooling of the granulites. The mineral assemblage, M1, of the host migmatitic metapelite formed at ~9–12.5 kbar and ~760–810°C, partial melting and migmatization (M2) occurred at ~7 kbar and ~760°C and re-equilibration (M3) at ~5–6 kbar and ~675°C. A garnet Lu–Hf age of 409.7 ± 2.3 Ma dates thermal climax (M2) and a garnet Sm–Nd age of 356 ± 11 Ma constrains M3 for the migmatitic metapelites. The timing of this late phase is also bracketed by an emplacement age of syntectonic granite dated at c. 360 Ma. Decoupling of M1 and M2 P–T evolutions between the mafic granulites and migmatitic metapelites indicates their different positions in the crustal column, while the shared pressure–temperature (P–T) evolution M3 suggests formation of a mélange-like association during the late stages of orogeny. The high-pressure event D1-M1 is interpreted as a result of Late Silurian–Early Devonian moderate crustal thickening of a thermally softened and thinned pre-orogenic crust. The high-temperature (HT) re-equilibration D2-M2 is interpreted as a result of Mid-Devonian shortening of the previously thickened crust, possibly due to ‘Andean-type’ underthrusting. The D3-M3 event reflects Late Devonian supra-subduction shortening and continuous erosion of the sub-crustal lithosphere. This tectono-metamorphic sequence of events is explained by polyphased Andean-type deformation of a ‘Cascadia-type’ active margin, which corresponds to a supra-subduction tectonic switching paradigm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号