首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   294篇
  免费   7篇
  国内免费   3篇
测绘学   3篇
地球物理   182篇
地质学   86篇
海洋学   2篇
天文学   23篇
自然地理   8篇
  2021年   4篇
  2017年   8篇
  2016年   6篇
  2015年   3篇
  2014年   4篇
  2013年   11篇
  2012年   9篇
  2011年   10篇
  2010年   3篇
  2009年   13篇
  2008年   11篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2002年   5篇
  2001年   3篇
  2000年   6篇
  1999年   6篇
  1997年   8篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1992年   3篇
  1991年   5篇
  1988年   6篇
  1986年   8篇
  1985年   7篇
  1984年   6篇
  1983年   4篇
  1982年   10篇
  1981年   6篇
  1980年   6篇
  1979年   5篇
  1978年   3篇
  1977年   7篇
  1976年   5篇
  1975年   6篇
  1974年   3篇
  1973年   7篇
  1972年   3篇
  1971年   6篇
  1970年   4篇
  1969年   4篇
  1968年   3篇
  1966年   5篇
  1964年   3篇
  1963年   3篇
  1962年   6篇
  1960年   5篇
  1957年   2篇
排序方式: 共有304条查询结果,搜索用时 31 毫秒
51.
Moldavites are tektites genetically related to the Ries impact structure, located in Central Europe, but the source materials and the processes related to the chemical fractionation of moldavites are not fully constrained. To further understand moldavite genesis, the Cu and Zn abundances and isotope compositions were measured in a suite of tektites from four different substrewn fields (South Bohemia, Moravia, Cheb Basin, Lusatia) and chemically diverse sediments from the surroundings of the Ries impact structure. Moldavites are slightly depleted in Zn (~10–20%) and distinctly depleted in Cu (>90%) relative to supposed sedimentary precursors. Moreover, the moldavites show a wide range in δ66Zn values between 1.7 and 3.7‰ (relative to JMC 3‐0749 Lyon) and δ65Cu values between 1.6 and 12.5‰ (relative to NIST SRM 976) and are thus enriched in heavy isotopes relative to their possible parent sedimentary sources (δ66Zn = ?0.07 to +0.64‰; δ65Cu = ?0.4 to +0.7‰). In particular, the Cheb Basin moldavites show some of the highest δ65Cu values (up to 12.5‰) ever observed in natural samples. The relative magnitude of isotope fractionation for Cu and Zn seen here is opposite to oxygen‐poor environments such as the Moon where Zn is significantly more isotopically fractionated than Cu. One possibility is that monovalent Cu diffuses faster than divalent Zn in the reduced melt and diffusion will not affect the extent of Zn isotope fractionation. These observations imply that the capability of forming a redox environment may aid in volatilizing some elements, accompanied by isotope fractionation, during the impact process. The greater extent of elemental depletion, coupled with isotope fractionation of more refractory Cu relative to Zn, may also hinge on the presence of carbonyl species of transition metals and electromagnetic charge, which could exist in the impact‐induced high‐velocity jet of vapor and melts.  相似文献   
52.
Black shales of the Lower Cambrian Niutitang Formation in southern China (Huangjiawan mine, Zunyi region, northern part of the Guizhou Province) host regionally distributed stratiform polymetallic Ni‐Mo‐platinum group elements (PGE)‐Au phosphate‐ and sulfide‐rich ores. These are confined to a ≥0.2‐m thick ore horizon composed of mineralized bodies of algal onkolites, phosphate nodules, and sulfide and shale clasts in a mineralized phosphate‐ and organic matter‐rich matrix. Compared to footwall and hanging wall shales, the ore bed is strongly enriched in Ni (up to 100‐fold), As (up to 97‐fold), Mo (up to 95‐fold), Sb (up to 67‐fold), Rh (up to 49‐fold), Cu (up to 37‐fold), Pd (up to 33‐fold), Ru (up to 24‐fold), Zn (up to 23‐fold), Pt (up to 21‐fold), Ir (up to 15‐fold), Co (up to 14‐fold), and Pb (up to 13‐fold). Even footwall and hanging wall black shales are significantly enriched by Mo (21‐fold) and Ni (12‐fold) but depleted in Cr in comparison to average Cambrian black shale. Organic matter is represented by separate accumulations dispersed in the rock matrix or as biotic bitumen droplets and veinlets in ore clasts. Similar organic carbon (Corg) values in an ore bed and enclosing footwall and hanging wall shales of little mineralization indicate that metal accumulation was not controlled only by biogenic productivity and organic matter accumulation rate. Evaporitic conditions during sedimentation of the basal part of the Niutitang Formation were documented by an occurrence of preserved Ni‐, V‐, Cr‐, and Cu‐enriched phosphate‐rich hardground with halite and anhydrite pseudomorphs on the paleosurface of the underlying Neoproterozoic carbonates. Neoproterozoic black shales of the Doushantuo Formation are characterized by increased metal concentrations. Comparison of metal abundances in both hardground and Doushantuo black shales indicate that black shales could have become a source of metal‐rich hardground during weathering. The polymetallic Ni‐Mo‐PGE sulfide‐rich ore bed is interpreted to represent a remnant of shallow‐water hardground horizon rich in metals, which originated in a sediment‐starved, semi‐restricted, seawater environment. During the Early Cambrian transgression an influx of fresh seawater and intensive evaporation, together with the hydrothermal enrichment of seawater in a semi‐restricted basin, resulted in the formation of dense metalliferous brines; co‐precipitation of metals together with phosphates and sulfides occurred at or above the oxic–anoxic sediment interface. Metal‐enriched hardground was disintegrated by the action of waves or bottom currents and deposited in a deeper part of the anoxic basin. Contemporaneously with the formation of a polymetallic Ni‐Mo‐PGE‐Au sulfide ore bed, economic sedimentary exhalative (SEDEX)‐type barite deposits were forming in a stratigraphically and geotectonically similar setting. The results of geochemical study at the Shang Gongtang SEDEX‐type Ba deposit indicate that concentrations of Ag, As, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V, Zn and other metals decrease from top of the barite body toward the hanging wall black shale. Lower Cambrian black shales of the Niutitang Formation above the barite body also display similar element abundances as Neoproterozoic black shales of the Doushantuo Formation, developed in the footwall of the barite body. But the geochemical composition of the sulfide layer is different from the Ni‐Mo ore bed, showing only elevated Pb, Cu, Ni and Mo values. It is suggested that hydrothermal brines at Shang Gongtang might have leached metals from footwall Neoproterozoic sequences and became, after mixing with normal seawater, an additional source of Ag, Cr, Cu, Pb, Sb, Zn, Ni, PGE, V and other metals.  相似文献   
53.
Cryogenic cave carbonate (CCC) represents a specific type of speleothem. Its precipitation proceeds at the freezing point and is triggered by freezing-induced concentration of solutes. Compared to classical speleothems (stalagmites, flowstones), CCC occurs as accumulations of loose uncemented aggregates. The grain sizes range from less than 1 μm to over 1 cm in diameter. Karst groundwater chemistry and its freezing rate upon entering the cave are responsible for highly variable grain morphology. Rapid freezing of water results in the formation of CCC powders with grain size typically below 50 μm. Slow freezing of water in caves (usually in systems where the CO2 escape is partly restricted; e.g., ice covered water pools) results in the formation of large mineral grains, with sizes from less than 1 mm to about 20 mm. The range of carbon and oxygen stable isotope compositions of CCC is larger than for a typical carbonate speleothem. Rapid freezing of water accompanied by a quick kinetic CO2 degassing results in large ranges of δ13C of the CCC powders (between –10‰ and +18‰ PDB). Slow freezing of water, with a restricted CO2 escape results in gradual increase of δ13C values (from −9‰ to +6‰ PDB; data ranges in individual caves are usually much more restricted), accompanied by a δ18O decrease of the precipitated carbonate (overall range from −10‰ to −24‰ PDB). These unusual trends of the carbonate δ18O evolution reflect incorporation of the heavier 18O isotope into the formed ice. New isotope data on CCC from three Romanian ice caves allow better understanding of the carbon and oxygen isotope fingerprint in carbonates precipitated from freezing of bulk water. CCCs are proposed as a new genetic group of speleothems.  相似文献   
54.
Fine-grained floodplain sediments of the catastrophic 2002 flood deposited along the lower reaches of the Berounka and Vltava Rivers, Czech Republic, were not highly contaminated with heavy metals and other toxic elements. This is due to the dominantly mineral character of the sediments (Ctot in the range 3.97–5.01%, relatively low content of clay minerals), and due to the very high degree of contamination dilution by eroded pre-industrial non-contaminated floodplain sediments. Despite this high degree of dilution, the influence of the small Litavka River, draining the historical Pb–Zn–Ag Příbram ore region, is well visible. The Litavka River is one of important sources of Pb and Zn contamination in the whole Berounka–Vltava–Labe river system. The 2002 flood sediments deposited in the floodplain of the Berounka and Vltava Rivers show poor vertical chemical zoning, except for some components enriched in the uppermost layer by precipitation from evaporated pore-water contained in the mud, i.e. secondary carbonate. The content of Ccarb of the sediments (0.05–0.15%) is partly represented by this secondary carbonate, which is later leached by rainwater, and partly by fragments of river mollusk shells. A majority of the heavy metals contained in sediments can be readily leached by diluted acids, and to a much smaller degree by rainwater.  相似文献   
55.
The measurement of the temperature variation of magnetic susceptibility can be used for the separation of ferromagnetic and paramagnetic susceptibility components. The method suggested by Hrouda (1994) assumes a hyperbolic dependence of paramagnetic, susceptibility and constant ferromagnetic susceptibility in the temperature interval used for the separation. Our new method works with a paramagnetic hyperbola again, but assumes that the ferromagnetic susceptibility temperature variation is represented by a linear relationship in the resolution interval, as indicated by the investigation of monomineralic ferromagnetic fractions.  相似文献   
56.
The remanent magnetization induced at room temperature (IRM) was measured for powder and massive specimens separated from a Fe7S8 crystal. To characterize the crystal, several methods were used including Mössbauer spectroscopy, thermomagnetic analysis, low-field susceptibility anisotropy and magnetic colloid method. Self-reversals of IRM were revealed in the massive crystal fragment after its magnetization in magnetic fields of the order of 10–102 mT. Both normal and reverse IRM vectors lay in the maximum susceptibility plane perpendicular to the crystallographic c′-axis of the crystal. A twinning also perpendicular to the crystal's c′-axis and a very low coercivity in each twin (monocrystallic layer) probably support the origin of the reverse IRM in the crystal.  相似文献   
57.
Summary A method of numerical simulation of the coefficient of reflection of the ionospheric transition layer as a function of frequency is applied to the experimental data related to several series of pearl-type pulsations Pc1 (f = 0.2 – 2 Hz) recorded at the observatories of Kerguelen, Sogra and Nurmijarvi. The inverse problem of modelling, i.e. determining the vertical profiles of ionospheric electron concentration corresponding to the actual experimental situations, was solved approximately. The initial assumption for interpreting the specific nature of the series of Pc1 micropulsations parallel in time was their resonance origin under reflection of the signal at magnetically conjugate ionospheres, Alfvén's resonators, in both of the Earth's hemispheres.  相似文献   
58.
Two examples of clouds of narrowband dm-spikes, observed by the Ondejov radiospectrograph in the 1–2 GHz frequency range, are analyzed. After transformation of the frequency scales to distances in the solar atmosphere, the power spectra analysis of size scales reveals a spectral index of –5/3, resembling that of Kolmogorov spectra of turbulent cascades. The narrowband dm-spikes are interpreted as radio emission from electrons accelerated in MHD cascading waves, probably generated in plasma outflows from magnetic field reconnection.  相似文献   
59.
The geopotential scale factor R o = GM/W o (the GM geocentric gravitational constant adopted) and/or geoidal potential Wo have been determined on the basis of the first year's (Oct 92 – Dec 93) ERS-1/TOPEX/POSEIDON altimeter data and of the POCM 4B sea surface topography model: R o °=(6 363 672.58°±0.05) m, W o °=(62 636 855.8°±0.05)m 2 s –2 . The 2°–°3 cm uncertainty in the altimeter calibration limits the actual accuracy of the solution. Monitoring dW o /dt has been projected.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号